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— (1) Introduction

* Challenge in Conversational Recommender Systems (CRS)

» CRS need to handle complex, knowledge-intensive user queries > We leverage existing dialogue data to recommend items based

» Existing methods rely on external knowledge bases or LLMs,
which can be resource-intensive and have practical limitations
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models

* Neighborhood-Based Collaborative Filtering (NBCRS)

on similar past queries without external knowledge bases or large

* Key Ideas

scores further

—- (2) Proposed Method: NBCRS

» Retrieve similar dialogue contexts from training data
» Recommend items frequently associated with these contexts
» (Optional) Train a scoring model p(item|query) to incorporate the
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—- (3) Experiments

N. Train Samples

N. Test Samples

* Datasets
Dataset Total Movies
Inspired 1506
Redial 6476
Reddit 29705

731 211
8929 4288
39928 19438

Table 1: Statistics of the Datasets
* Overall Performance (see the paper for full-table)

. Inspired Reddit Redial
Model Sett:

ode ‘ €08 | Recall@20 ‘ Recall@20 | Recall@20
KGSF Sft+KG 9.17 0.39 8.90 0.49 17.05 0.01
UniCRS Sft+KG 18.59 0.12 9.79 0.50 27.12 0.28

Popularity - 113 2.19 2.210.10 6.01 036

FISM Sft 13.45 0.49 6.510.48 8.24 0.46

Gemma-2B Zero-Shot | 4.74 1.47 2.890.12 5.78 0.36

Sft 2.37 1.05 3.49 013 5.110.33

Vicuna-7B Zero-Shot | 11.37 2.20 6.06 0.17 13.67 0.52
cuna Sft 1043211 | 718018 | 13.67052
Zero-Shot | 14.69 2.44 14.08 0.24 16.34 0.56

NB 16.112.23 15.52 0.25 16.58 0.54

RE MB 1.42 031 13.62 0.24 14.80 0.54
N+M 15.16 0.21 15.58 0.26 16.86 0.57

 Further Analysis

Table 3: Performance of models across datasets with standard
errors. The reported numbers are percentages. Best perfor-
mance excluding and including knowledge-graph-enhanced
models are bolded and underlined, respectively.
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Figure 2: Analysis and ablations

— (4) Conclusion

« Contributions

* When to Use NBCRS?

This decision tree is mainly depicting classes
of models, do double check and don’t miss
out the SOTA! Curated AUG 24.
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I have lots of data (e.g. 30k+ query-
item pairs on Reddit-Movie Benchmark)

YES

Query->item models, e.g.
NBCRS (here) [1]

NO

| have KGs about my item

YES

» Introduced a simple yet effective method for CRS: NBCRS
» Demonstrated that NBCRS can match or exceed the performance of
larger, resource-intensive methods

Start

v

| have no issue serving LLM (13B+) in

terms of speed/cost/copyright & LLM

has knowledge about my items (e.g.
movies)

| want to fine-tune a LLM that | have
whit-box control / | care about hit@k for
larger k (e.g. >20)

YES NO
Prompting LLM
Tuning LLM for for CRS, as an
CRShasian example,
s
exam,[:;]e, [z LLM as Zero
Shot CRS [2]
Our community has a large

body of cool KG-enhanced
works on Inspired/Redial.

e.g. UniCRS [4], and KBRD/
KGSF - CRSLab [5] has a

series of implementations.
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