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Research Overview

. ? How can we expose diverse items across all
users in bundle recommendations?

L

»Q"PopCon (our method) diversifies the item
exposure when recommending bundles!
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Recommender System

* |t provides personalized items for each
user

- It enhances users’ experience and increase
sales revenue

* Applications
- Essential for various online services

amazon yy@[B NETFLIX & spotify
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Product Bundling

* |t is a prevalent strategy in industries
- One-stop convenience for customers
- Increased exposure to lesser-known products
- Cost-efficient offerings to customers

Examples of product bundling
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Bundle Recommendation

* |t aims to recommend bundles instead of
individual items

* |t has become an important technique in
industries

Bundles
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Aggregate Diversity

* The degree of fair exposure of items
- It Is measured by coverage and entropy

* Previous works on bundle recommendation
- They have focused only on accuracy

* |[[lustrative comparison
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Problem Definition
Aggregately diversified bundle recommendation

 Given
» A user-bundle interaction matrix X € R/%/*IBl
- A user-item interaction matrix Y € RIU/*/7I

> A bundle-item affiliation matrix Z € RIBIx/
* U, B, J: sets of users, bundles, and items, resp.

 Recommend
- k bundles to each user u € U

 Such that

- Users are satisfied with the recommended bundles
- The recommended items are aggregately diverse
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Overview

* We propose PopCon to address the problem

- Two phases: training and reranking

* Training phase. Mitigates popularity bias when
training a model

 Reranking phase. Maximizes both accuracy and
aggregate diversity simultaneously

[Mitigate popularity biasJ [Maximize both accuracy and aggregate diversity]

— B Negative  Top-IV candidates Top-k recommendation
sampling 2

(i i3
mmWww BBy () Al
isributon . distibution s (B b5 (s |
| Sampling distribution ~ Backbone model | U| x N ?gg:\i?;gtgg?{:ﬁr;e U| x k |
| Training phase (Section 3.2) | Reranking phase (Section 3.3) |
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Training Phase (1/3)

» Goal. Train a model f(u, b)

- f estimates how much user u likes bundle b

* Objective function. BPR (Bayesian

Personalized Ranking) loss: u: target user
b: positive bundle

Z —Ino (f(ua b) — f(u, b/)) b": negative bundle

D: set of triplets
(u,b,b")ED o (-): sigmoid func.
- It maximizes the difference between positive
(interacted) target b and negative (non-interacted)

target b’ for each user u
- Previous works sample b’ from the uniform distribution

« p(b") = L where B is the set of bundles
1] Hyunsik Jeon (SNU) 11



Training Phase (2/3)

* Observation. Models easily overfit to some
popular bundles

- It makes it difficult to achieve high aggregate diversity
when using the model f(-) in the reranking phase

—/— Popularity rate  -Q- False recommendation rate of DAM  -{)- False recommendation rate of CrossCBR
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Training Phase (3/3)

» Challenge 1. How can we mitigate the popularity
bias of the model?

* Ildea 1. Popularity-based negative sampling
- Objective function: BPR loss (same as previous works)
- Sampling distribution of negative bundle b’
, freq(v')
p(b) =« ,
®) EjeB freq(y)

popularity-based distribution uniform distribution

€ [0,1] : balance
4+ (1 . a)i coefficient
| B| freq(j): number of
bundle j’s interactions
B: set of bundles

« Sampling probability is large if a bundle b’ is popular
* It mitigates the popularity bias
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Reranking Phase (1/6)

» Goal. Maximize both accuracy and aggregate
diversity of result of f(-)

* Algorithm. Recommend k bundles to each user

- 1. For each user u € U, we select top-N (k < N < |B])
candidate bundles that maximize f(u, b)

- 2. (Repeat k times.) For each user u € U, we select a
bundle that maximizes g(u, b)

* g(u,b) € R: a scoring function that measures accuracy and
aggregate diversity simultaneously

Hyunsik Jeon (SNU) 14



Reranking Phase (2/6)

» WWe have two challenges to design g(+)

» Challenge 2-1. How to measure the aggregate
diversity considering bundles’ configuration?

Which bundle is more
suitable for maximizing
aggregate diversity?

/
(% 1%

) o gl

Candidate bundle b; Candidate bundle by
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Reranking Phase (3/6)

* ldea 2-1. Configuration-aware diversity gain
DivGain(b, R(k)) = %CovGain(b, R(k)) + %EntGain(b, R(k))

> It measures the gains of both coverage and entropy
when adding bundle b to the current recommendation

result R(k)

> CovGain (b, ﬁ(k)) € [0,1]: the gain of item coverage
|t considers the appearance of new items

- EntGain (b, ﬁ(k)) € [—1,1]: the gain of item entropy
It considers the fair appearance of items

Hyunsik Jeon (SNU)
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Reranking Phase (4/6)

* We have two challenges to design g(+)
* Challenge 2-2. How to handle the opposite two

criteria: accuracy and aggregate diversity?

- Accuracy and aggregate diversity are opposite in most
cases

Which bundle is more suitable
considering both accuracy and
aggregate dlversny’?

: ~ o
| D g g! Q & .I
ﬁ@
1'\
Target useru  Candidate bundle by Candidate bundle b
f(u, bl) =0.9 f(u, bg) =04

DivGain(by,R(k)) = 0.1 DivGain(by, R(k)) = 0.5
Hyunsik Jeon (SNU)
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Reranking Phase (5/6)

* Naive solution. Weighted sum of two scores
g(u,b,R(k)) = (1 — B)o (&) + BDivGain(b, R(k))

~ Xup = f (w, b)
[&ﬁﬁ)} {*ﬁ@] p € [0,1]: balance coefficient
1'\ T

Target user u Candidate bundle b; Candidate bundle b
f(u, bl) = 0 9 f(u,by) =04
DivGain (b, R(k)) = 0.1 DivGain(by, R(k)) = 0.5
1'\ [ﬁﬁ@} [N E} User u will not be satisfied *
Target useru,  Candidate bundle b Candidate bundle b3~ With this recommendation
f(u,b1) = 0.9 f(u,b3) = 0.1 f

DivGain(by, R(k)) = 0.1 DivGain(bs, R(k)) = 1.0
Consider examples when 8 = 0.5
Hyunsik Jeon (SNU) 18



Reranking Phase (6/6)

 ldea 2-2. Accuracy-prioritized coupling

- We propose an accuracy priority property that
reduces the influence of DivGain(-) as x,;, increases:

Og(u,b,R(K)) _  dg(u,t',R(k))
dDivGain(b,R(k)) ~ 0DivGain(b',R(k))

k\ub = f(ur b)
U(Qub) € [O' 1]

If 0'(2’1\3“,},) > O'(QATf,,,b/), then

> It ensures that bundles that users like a lot are
recommended regardless of DivGain(-) to satisfy them

- Thus, our scoring function:
g(u,b,R(k)) = 0(2uw)” + (1 — 0(Zus)?) DivGain(b, R(k))
f € [0,1]: balance coefficient

Hyunsik Jeon (SNU) 19
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Experimental Questions

* Q1. Performance comparison

- Does PopCon provide the best trade-off between
accuracy and aggregate diversity?

« Q2. Ablation study

- How do the main ideas help improve the performance?

Hyunsik Jeon (SNU) 21



Datasets

 We use three real-world datasets
- U, B, I: users, bundles, and items, resp.

Dataset #U #B #1I #U-B (dens.) #U-I (dens.) #B-I (dens.) Avg. B size

Steam® 29,634 615 2,819 87,565 (0.48%) 902,967 (1.08%) 3,541 (0.20%)
Youshu? 8,039 4,771 32,770 51,377 (0.13%) 138,515 (0.05%) 176,667 (0.11%)
NetEase® 18,528 22,864 123,628 302,303 (0.07%) 1,128,065 (0.05%) 1,778,838 (0.06%)

5.76
37.03
77.80

- oteam: game platform
- Youshu: book review platform
- NetEase: cloud music platform

Hyunsik Jeon (SNU)
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Baselines and Backbones

* We compare PopCon with six baselines

- Reverse, Random, Kwon, Karakaya, Fairmatch,
and Ulmatch

* They rerank the backbone’s results by treating
bundles as atomic units

* We leverage two backbone models
- DAM: SOTA matrix factorization-based model
- CrossCBR: SOTA graph learning-based model

Hyunsik Jeon (SNU) 23



Evaluation

* Leave-one-out protocol

- One of each user’s interactions is randomly
selected for testing

* Metrics
- MAP@5 (for accuracy)

- Coverage@5 (for aggregate diversity)
- Entropy@?5 (for aggregate diversity)

Hyunsik Jeon (SNU)
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Experimental Results (1/2)

Performance comparison

- Q1. Does PopCon provide the best trade-off between accuracy

and aggregate diversity?
- A1. PopCon outperforms baselines noticeably

—O— PonCon (proposed) Ulmatch -A- Fairmatch -V- Karakaya -£- Kwon -- Random ~-< Reverse
Steam Best Youshu Best NetEase Best Steam Best Youshu Best NetEase Best
10 16/4% 02 08 o
To) 13 23&\ 60.6 0.8
® N > 06 :
> 8 % 148 &
a 12 N ©0.4
£ ﬁf s o 0.4 0.6
g 6 n > 12 ¢ 80.2%%
£ A\hXV 0.2 0.4
0.00 0.25 0.50 0.02 0.04 0.002 0.003 0.00 0.25 0.50 0.002 0.003
MAP@5 MAP@5 MAP@5 MAP@5 MAP@5
(a) Using DAM [5] as backbone model
Steam Best Youshu  Best NetEase Best Steam  Best Youshu Best NetEase Best
s s 'S ® * o s
C CQ3 16
10 0.8
0 PopCor:m 13 A 8) 0.9
© | abetter V 15 &%% 2.0:9 0.8
& 8|_trade-off curve ~er N R4 '
£ %( 1|12 ‘\3&3‘ S 0.7
0 6”2 % 14 7 o2
ﬁ\y‘A 11 b X3 £ 0.6
0.0 0.5 0.02 004 0.06 0.005 0.010 0.015 0.0 0.5 0.02 0.04 0.06 0.005 0.010 0.015

MAP@5 MAP@5 MAP@5 MAP@5 MAP@5 MAP@5

(b) Using CrossCBR [14] as backbone model
Hyunsik Jeon (SNU)
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Experimental Results (2/2)

Variants Training Reranking
PopCon Ours Ours
PopCon-debias Ours Karakaya (baseline)
. PopCon-rerank No debiasing Ours
¢ Ab|atI0n Stu dy PopCon-linear Ours Weighted sum

- Q2. How do the main ideas help improve the performance?
o A2. All the main ideas help improve the performance

—O- PopCon (proposed) =>- PopCon-debias —{)- PopCon-rerank =>- PopCon-linear

Steam Best Youshu Bes‘t{ Steam Best Youshu Bes‘t{
10 o 0.8 0.8
ué) 0’0% t o0.6/%- 0.6
> 8% S "% '
T 6 > m '
w [e)
1 002 Olo.2
0.2 0.4 0.6 0.02 0.04 0.2 0.4 0.6 0.02 0.04
MAP@5 MAP@5 MAP@5 MAP@5
(a) Usage of DAM [5] as the backbone model
Steam Best Youshu Best Steam Bes‘t{ Youshu Best
10 el
0 0.75
® ®
28 ©0.50
o o
o 6 éo.zs

0.00 025 050 0.75 0.02 0.04 0.06 0.00 0.25 0.50 0.75
MAP@5 MAP@5 MAP@5

(b) Usage of CrossCBR [14] as the backbone model
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Conclusion

* We propose PopCon for aggregately diversified
bundle recommendation

* Three main ideas of PopCon
- 1) Popularity-based negative sampling
> 2) Maximizing the gains of coverage and entropy
- 3) Accuracy-prioritized coupling

* PopCon outperforms all baselines significantly
- Experiments on three real-world datasets

- It achieves up to 60.5% higher Entropy@35 and 3.92 X
higher Coverage@5 with comparable accuracies
compared to the best competitor

Hyunsik Jeon (SNU)
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Thank you!

Personal website: https://jeon185.qithub.io
Code: https://github.com/snudatalab/PopCon
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Appendix
Experimental Results

 Effects of number of candidates

- Q3. How does the number N of candidates affect the
performance?
- A3. The performance is improved as N increased and finally

reaches a plateau

-~ N=10 N=25 N=50 —£3 N=100 - N=200 =< N=1000 -O- N=2000
Steam Bes} Youshu Bes‘t{ o Steam Best Youshu" Best
©n 10 !\5 8)0.8
® 13.0 ] k
2 0.6 Larger N improves 0.6
o 8 12.5 — ’
B @ performance
c 12.0 g %4
W A_A—A_A'"I\A reaches a plateau 38
6 11.5 0.2 MN—NNNA 04
0.4 0.6 0.8 0.04 0.06 0.4 0.6 0.8 0.04 0.06
MAP@5 MAP@5 MAP@5 MAP@5

Using CrossCBR as the backbone model
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