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Research Overview

• How can we expose diverse items across all 
users in bundle recommendations?

• PopCon (our method) diversifies the item 
exposure when recommending bundles!
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Outline

• Introduction
• Proposed Method
• Experiments
• Conclusion
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Recommender System

• It provides personalized items for each 
user
o It enhances users’ experience and increase 

sales revenue
• Applications
o Essential for various online services
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Product Bundling

• It is a prevalent strategy in industries
o One-stop convenience for customers
o Increased exposure to lesser-known products
o Cost-efficient offerings to customers

Examples of product bundling
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Bundle Recommendation

• It aims to recommend bundles instead of 
individual items

• It has become an important technique in 
industries
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Aggregate Diversity

• The degree of fair exposure of items
o It is measured by coverage and entropy

• Previous works on bundle recommendation
o They have focused only on accuracy

• Illustrative comparison
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Problem Definition
Aggregately diversified bundle recommendation

• Given
o A user-bundle interaction matrix 𝐗 ∈ ℝ 𝒰 ×|ℬ|

o A user-item interaction matrix 𝐘 ∈ ℝ 𝒰 ×|ℐ|

o A bundle-item affiliation matrix 𝐙 ∈ ℝ ℬ ×|ℐ|

• 𝒰, ℬ, ℐ: sets of users, bundles, and items, resp.

• Recommend
o 𝑘 bundles to each user 𝑢 ∈ 𝒰

• Such that
o Users are satisfied with the recommended bundles
o The recommended items are aggregately diverse
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Overview

• We propose PopCon to address the problem
o Two phases: training and reranking

• Training phase. Mitigates popularity bias when 
training a model

• Reranking phase. Maximizes both accuracy and 
aggregate diversity simultaneously

Backbone model 

Negative 
sampling

Popularity-based 
distribution

Uniform
distribution

Training phase (Section 3.2)

Top-  candidates

Reranking phase (Section 3.3) 

Sampling distribution Configuration-aware 
reranking algorithm 

Top-  recommendation 

Mitigate popularity bias Maximize both accuracy and aggregate diversity
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Training Phase (1/3)

• Goal. Train a model 𝑓(𝑢, 𝑏)
o 𝑓 estimates how much user 𝑢 likes bundle 𝑏

• Objective function. BPR (Bayesian 
Personalized Ranking) loss:

o It maximizes the difference between positive 
(interacted) target 𝑏 and negative (non-interacted) 
target 𝑏′ for each user 𝑢

o Previous works sample 𝑏′ from the uniform distribution
• 𝑝 𝑏! = "

|ℬ|
where ℬ is the set of bundles

𝑢: target user
𝑏: positive bundle
𝑏′: negative bundle
𝐷: set of triplets
𝜎(⋅): sigmoid func.
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Training Phase (2/3)

• Observation. Models easily overfit to some 
popular bundles
o It makes it difficult to achieve high aggregate diversity 

when using the model 𝑓(⋅) in the reranking phase
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Training Phase (3/3)

• Challenge 1. How can we mitigate the popularity 
bias of the model?

• Idea 1. Popularity-based negative sampling
o Objective function: BPR loss (same as previous works)
o Sampling distribution of negative bundle 𝑏′

• Sampling probability is large if a bundle 𝑏′ is popular
• It mitigates the popularity bias

𝛼 ∈ [0,1] : balance
coefficient
𝑓𝑟𝑒𝑞(𝑗): number of
bundle 𝑗’s interactions
ℬ: set of bundlespopularity-based distribution uniform distribution
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Reranking Phase (1/6)

• Goal. Maximize both accuracy and aggregate 
diversity of result of 𝑓(⋅)

• Algorithm. Recommend 𝑘 bundles to each user
o 1. For each user 𝑢 ∈ 𝒰, we select top-𝑁 (𝑘 < 𝑁 < |ℬ|) 

candidate bundles that maximize 𝑓(𝑢, 𝑏)
o 2. (Repeat 𝑘 times.) For each user 𝑢 ∈ 𝒰, we select a

bundle that maximizes 𝑔(𝑢, 𝑏)
• 𝑔 𝑢, 𝑏 ∈ ℝ: a scoring function that measures accuracy and 

aggregate diversity simultaneously
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Reranking Phase (2/6)

• We have two challenges to design 𝑔(⋅)
• Challenge 2-1. How to measure the aggregate 

diversity considering bundles’ configuration?

Candidate bundle 

Which bundle is more
suitable for maximizing

aggregate diversity?

Candidate bundle 



16Hyunsik Jeon (SNU)

Reranking Phase (3/6)

• Idea 2-1. Configuration-aware diversity gain

o It measures the gains of both coverage and entropy 
when adding bundle 𝑏 to the current recommendation 
result 5𝐑 𝑘

o 𝐶𝑜𝑣𝐺𝑎𝑖𝑛 𝑏, 5𝐑 𝑘 ∈ [0,1]: the gain of item coverage
• It considers the appearance of new items

o 𝐸𝑛𝑡𝐺𝑎𝑖𝑛 𝑏, 5𝐑 𝑘 ∈ [−1,1]: the gain of item entropy
• It considers the fair appearance of items
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Reranking Phase (4/6)

• We have two challenges to design 𝑔(⋅)
• Challenge 2-2. How to handle the opposite two 

criteria: accuracy and aggregate diversity?
o Accuracy and aggregate diversity are opposite in most 

cases

Candidate bundle Candidate bundle Target user 

Which bundle is more suitable
considering both accuracy and

aggregate diversity?
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Reranking Phase (5/6)

• Naïve solution. Weighted sum of two scores

Candidate bundle Candidate bundle Target user 

Candidate bundle Candidate bundle Target user 
User  will not be satisfied 
with this recommendation

0𝑥!" ≜ 𝑓(𝑢, 𝑏)
𝛽 ∈ [0,1]: balance coefficient

Consider examples when 𝛽 = 0.5
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Reranking Phase (6/6)

• Idea 2-2. Accuracy-prioritized coupling
o We propose an accuracy priority property that 

reduces the influence of 𝐷𝑖𝑣𝐺𝑎𝑖𝑛(⋅) as F𝑥&' increases:

o It ensures that bundles that users like a lot are 
recommended regardless of 𝐷𝑖𝑣𝐺𝑎𝑖𝑛(⋅) to satisfy them

o Thus, our scoring function:

𝛽 ∈ [0,1]: balance coefficient

&𝑥!" ≜ 𝑓 𝑢, 𝑏
𝜎 &𝑥!" ∈ [0, 1]
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Experimental Questions

• Q1. Performance comparison
o Does PopCon provide the best trade-off between 

accuracy and aggregate diversity?
• Q2. Ablation study

o How do the main ideas help improve the performance?
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Datasets

• We use three real-world datasets
o U, B, I: users, bundles, and items, resp.

o Steam: game platform
o Youshu: book review platform
o NetEase: cloud music platform
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Baselines and Backbones

• We compare PopCon with six baselines
o Reverse, Random, Kwon, Karakaya, Fairmatch, 

and UImatch
• They rerank the backbone’s results by treating 

bundles as atomic units

• We leverage two backbone models
o DAM: SOTA matrix factorization-based model
o CrossCBR: SOTA graph learning-based model
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Evaluation

• Leave-one-out protocol
o One of each user’s interactions is randomly 

selected for testing
• Metrics
o MAP@5 (for accuracy)
o Coverage@5 (for aggregate diversity)
o Entropy@5 (for aggregate diversity)
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Experimental Results (1/2)

• Performance comparison
o Q1. Does PopCon provide the best trade-off between accuracy 

and aggregate diversity?
o A1. PopCon outperforms baselines noticeably
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Experimental Results (2/2)

• Ablation study
o Q2. How do the main ideas help improve the performance?
o A2. All the main ideas help improve the performance

Variants Training Reranking
PopCon Ours Ours

PopCon-debias Ours Karakaya (baseline)

PopCon-rerank No debiasing Ours

PopCon-linear Ours Weighted sum
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Conclusion

• We propose PopCon for aggregately diversified 
bundle recommendation

• Three main ideas of PopCon
o 1) Popularity-based negative sampling
o 2) Maximizing the gains of coverage and entropy
o 3) Accuracy-prioritized coupling

• PopCon outperforms all baselines significantly
o Experiments on three real-world datasets
o It achieves up to 60.5% higher Entropy@5 and 3.92×

higher Coverage@5 with comparable accuracies 
compared to the best competitor



29

Thank you!
Personal website: https://jeon185.github.io

Code: https://github.com/snudatalab/PopCon

https://jeon185.github.io/
https://github.com/snudatalab/PopCon


30Hyunsik Jeon (SNU)

Appendix
Experimental Results

• Effects of number of candidates
o Q3. How does the number 𝑁 of candidates affect the 

performance?
o A3. The performance is improved as 𝑁 increased and finally 

reaches a plateau

Using CrossCBR as the backbone model


