

Aggregately Diversified Bundle Recommendation via Popularity Debiasing and Configuration-aware Reranking

Hyunsik Jeon, Jongjin Kim, Jaeri Lee, Jong-eun Lee, and U Kang Seoul National University PAKDD 2023

Research Overview

- **?** How can we expose <u>diverse items</u> across all users in <u>bundle recommendations</u>?
- <u>PopCon</u> (our method) diversifies the item exposure when recommending bundles!

Hyunsik Jeon (SNU)

Outline

- Introduction
- Proposed Method
- Experiments
- Conclusion

Recommender System

- It provides <u>personalized items</u> for each user
 - It enhances users' experience and increase sales revenue
- Applications

Essential for various online services

Product Bundling

- It is a **prevalent strategy** in industries
 - One-stop convenience for customers
 - $_{\circ}$ Increased exposure to lesser-known products
 - Cost-efficient offerings to customers

Examples of product bundling

Hyunsik Jeon (SNU)

Bundle Recommendation

- It aims to recommend <u>bundles</u> instead of individual items
- It has become an <u>important technique</u> in industries

Bundles

Aggregate Diversity

- The degree of <u>fair exposure of items</u> It is measured by coverage and entropy
- Previous works on bundle recommendation They have focused only on accuracy
- Illustrative comparison

Problem Definition

Aggregately diversified bundle recommendation

• Given

- $_{\circ}$ A user-bundle interaction matrix $\textbf{X} \in \mathbb{R}^{|\mathcal{U}| \times |\mathcal{B}|}$
- $_{\circ}$ A user-item interaction matrix $\mathbf{Y} \in \mathbb{R}^{|\mathcal{U}| \times |\mathcal{I}|}$
- $_{\circ}$ A bundle-item affiliation matrix $\mathbf{Z} \in \mathbb{R}^{|\mathcal{B}| \times |\mathcal{I}|}$
 - $\mathcal{U}, \mathcal{B}, \mathcal{I}$: sets of users, bundles, and items, resp.

Recommend

 $_{\circ} k$ bundles to each user $u \in \mathcal{U}$

Such that

- Users are satisfied with the recommended bundles
- The recommended items are aggregately diverse

Outline

- Introduction
- Proposed Method
- Experiments
- Conclusion

Overview

- We propose **PopCon** to address the problem
 - Two phases: training and reranking
 - **Training phase.** Mitigates popularity bias when training a model
 - Reranking phase. Maximizes both accuracy and aggregate diversity simultaneously

Training Phase (1/3)

• Goal. Train a model f(u, b)

 \circ f estimates how much user u likes bundle b

Objective function. BPR (Bayesian Personalized Ranking) loss:

$$\sum_{(u,b,b')\in D} -\ln\sigma\left(f(u,b) - f(u,b')\right)$$

- *u*: target user *b*: positive bundle *b'*: negative bundle *D*: set of triplets $\sigma(\cdot)$: sigmoid func.
- It maximizes the difference between positive (interacted) target b and negative (non-interacted) target b' for each user u
- $_{\circ}$ Previous works sample b' from the uniform distribution

•
$$p(b') = \frac{1}{|B|}$$
 where B is the set of bundles
Hyunsik Jeon (SNU)

Training Phase (2/3)

- **Observation.** Models easily overfit to some popular bundles
 - $_{\circ}\,$ It makes it difficult to achieve high aggregate diversity when using the model $f(\cdot)$ in the reranking phase

Training Phase (3/3)

- Challenge 1. How can we mitigate the popularity bias of the model?
- Idea 1. Popularity-based negative sampling

 Objective function: BPR loss (same as previous works)
 - $_{\circ}$ Sampling distribution of negative bundle b'

$$p(b') = \alpha \frac{freq(b')}{\sum_{j \in \mathcal{B}} freq(j)} + \frac{(1-\alpha)\frac{1}{|\mathcal{B}|}}{|\mathcal{B}|}$$

 $\alpha \in [0,1]$: balance coefficient freq(j): number of bundle j's interactions \mathcal{B} : set of bundles

• Sampling probability is large if a bundle b' is popular

popularity-based distribution uniform distribution

It mitigates the popularity bias

Reranking Phase (1/6)

- Goal. Maximize both accuracy and aggregate diversity of result of $f(\cdot)$
- Algorithm. Recommend k bundles to each user
 - 1. For each user $u \in U$, we select top-N (k < N < |B|) candidate bundles that maximize f(u, b)
 - ∘ 2. (Repeat k times.) For each user $u \in U$, we select a bundle that maximizes g(u, b)
 - $g(u, b) \in \mathbb{R}$: a scoring function that measures accuracy and aggregate diversity simultaneously

Reranking Phase (2/6)

- We have two challenges to design $g(\cdot)$
- Challenge 2-1. How to measure the aggregate diversity considering bundles' configuration?

Reranking Phase (3/6)

• Idea 2-1. Configuration-aware diversity gain

$$DivGain(b, \hat{\mathbf{R}}(k)) = \frac{1}{2}CovGain(b, \hat{\mathbf{R}}(k)) + \frac{1}{2}EntGain(b, \hat{\mathbf{R}}(k))$$

- It measures the gains of both coverage and entropy when adding bundle *b* to the current recommendation result $\widehat{\mathbf{R}}(k)$
- ∘ *CovGain* $(b, \hat{\mathbf{R}}(k)) \in [0,1]$: the gain of item coverage
 - It considers the appearance of new items
- ∘ *EntGain* $(b, \widehat{\mathbf{R}}(k)) \in [-1,1]$: the gain of item entropy
 - It considers the fair appearance of items

Reranking Phase (4/6)

- We have two challenges to design $g(\cdot)$
- Challenge 2-2. How to handle the opposite two criteria: accuracy and aggregate diversity?
 - Accuracy and aggregate diversity are opposite in most cases

Reranking Phase (5/6)

- Naïve solution. Weighted sum of two scores
 - $g(u, b, \hat{\mathbf{R}}(k)) = (1 \beta)\sigma(\hat{x}_{ub}) + \beta DivGain(b, \hat{\mathbf{R}}(k))$

Reranking Phase (6/6)

- Idea 2-2. Accuracy-prioritized coupling
 - We propose an **accuracy priority property** that reduces the influence of $DivGain(\cdot)$ as \hat{x}_{ub} increases:

If
$$\sigma(\hat{x}_{ub}) > \sigma(\hat{x}_{ub'})$$
, then $\frac{\partial g(u, b, \hat{\mathbf{R}}(k))}{\partial DivGain(b, \hat{\mathbf{R}}(k))} < \frac{\partial g(u, b', \hat{\mathbf{R}}(k))}{\partial DivGain(b', \hat{\mathbf{R}}(k))}$.
 $\hat{x}_{ub} \triangleq f(u, b)$
 $\sigma(\hat{x}_{ub}) \in [0, 1]$

It ensures that bundles that users like a lot are recommended regardless of *DivGain(·)* to satisfy them
 Thus, our scoring function:

$$g(u, b, \hat{\mathbf{R}}(k)) = \sigma(\hat{x}_{ub})^{\beta} + (1 - \sigma(\hat{x}_{ub})^{\beta}) DivGain(b, \hat{\mathbf{R}}(k))$$

$$\beta \in [0, 1]: \text{ balance coefficien}$$

Outline

- Introduction
- Proposed Method
- Experiments
- Conclusion

Experimental Questions

Q1. Performance comparison

 Does PopCon provide the best trade-off between accuracy and aggregate diversity?

Q2. Ablation study

 $_{\circ}\,$ How do the main ideas help improve the performance?

Datasets

• We use three real-world datasets

_o U, B, I: users, bundles, and items, resp.

Dataset	#U	#B	#I	#U-B	(dens.)	#U-I	(dens.)	#B-I (de	ens.)	Avg. B size
Steam^1	29,634	615	$2,\!819$	87,565	(0.48%)	902,967	(1.08%)	3,541 (0.2)	20%)	5.76
$Youshu^2$	8,039	4,771	32,770	$51,\!377$	(0.13%)	$138,\!515$	(0.05%)	176,667 (0.	11%)	37.03
$NetEase^{3}$	$18,\!528$	$22,\!864$	$123,\!628$	$302,\!303$	(0.07%)	$1,\!128,\!065$	(0.05%)	1,778,838 (0.	06%)	77.80

- Steam: game platform
- Youshu: book review platform
- NetEase: cloud music platform

Baselines and Backbones

- We compare PopCon with **six baselines**
 - Reverse, Random, Kwon, Karakaya, Fairmatch, and Ulmatch
 - They rerank the backbone's results by treating bundles as atomic units
- We leverage two backbone models
 - DAM: SOTA matrix factorization-based model
 - CrossCBR: SOTA graph learning-based model

Evaluation

- Leave-one-out protocol
 - One of each user's interactions is randomly selected for testing
- Metrics
 - MAP@5 (for accuracy)
 - Coverage@5 (for aggregate diversity)
 - Entropy@5 (for aggregate diversity)

Experimental Results (1/2)

Performance comparison

- Q1. Does PopCon provide the best trade-off between accuracy and aggregate diversity?
- A1. PopCon outperforms baselines noticeably

Experimental Results (2/2)

Variants	Training	Reranking		
PopCon	Ours	Ours		
PopCon-debias	Ours	Karakaya (baseline)		
PopCon-rerank	No debiasing	Ours		
PopCon-linear	Ours	Weighted sum		

Ablation study

- Q2. How do the main ideas help improve the performance?
- A2. All the main ideas help improve the performance

Outline

- Introduction
- Proposed Method
- Experiments
- <u>Conclusion</u>

Conclusion

- We propose <u>PopCon</u> for aggregately diversified bundle recommendation
- Three main ideas of PopCon
 - 1) Popularity-based negative sampling
 - 2) Maximizing the gains of coverage and entropy
 - 3) Accuracy-prioritized coupling
- PopCon outperforms all baselines significantly
 - Experiments on three real-world datasets
 - It achieves up to <u>60.5%</u> higher Entropy@5 and <u>3.92×</u> higher Coverage@5 with comparable accuracies compared to the best competitor

Thank you!

Personal website: <u>https://jeon185.github.io</u> Code: <u>https://github.com/snudatalab/PopCon</u>

Appendix Experimental Results

- Effects of number of candidates
 - Q3. How does the number N of candidates affect the performance?
 - $_{\circ}$ A3. The performance is improved as *N* increased and finally reaches a plateau

Using <u>CrossCBR</u> as the backbone model