

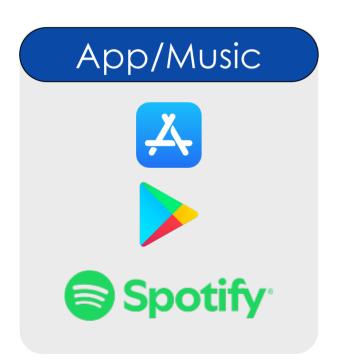
Adapting Large Vision-Language Models to Visually-Aware Conversational Recommendation

Hyunsik Jeon¹, Satoshi Koide², Yu Wang¹, Zhankui He³, Julian McAuley¹

¹ UC San Diego, ² Toyota Research, ³ Google DeepMind

Recommender Systems are Everywhere

They deeply influence our daily choices and experiences

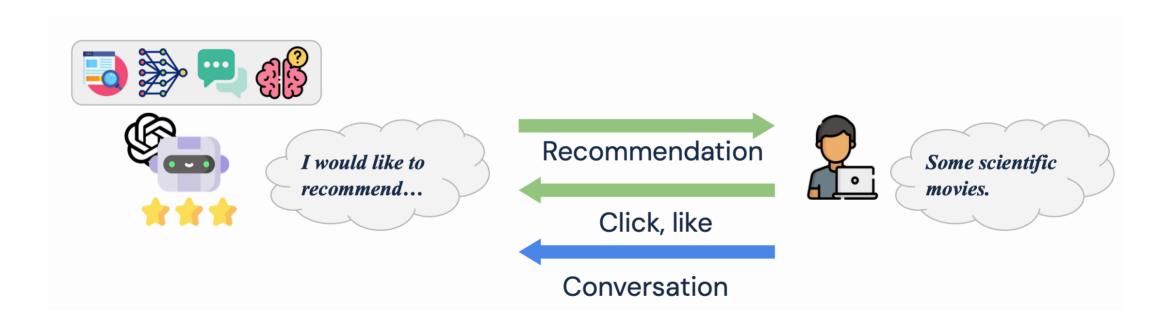


Traditional Recommendation

Traditional RecSys leverages passive signals

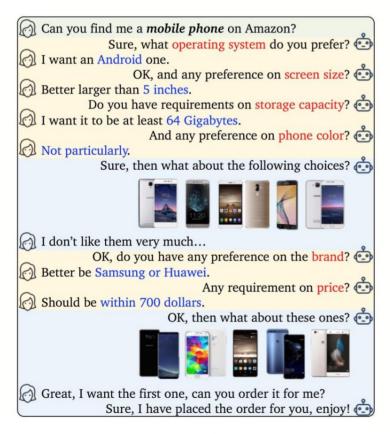
Conversational Recommendation

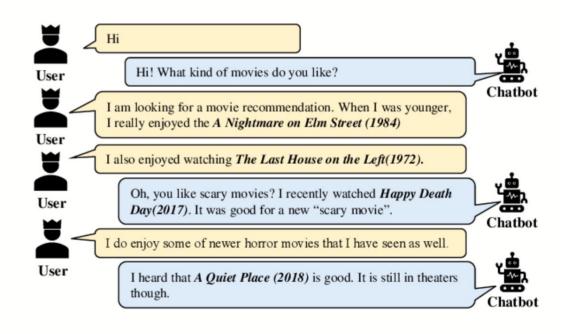
Conversational RecSys engages users in an interactive loop



Conversation Brings Revolution

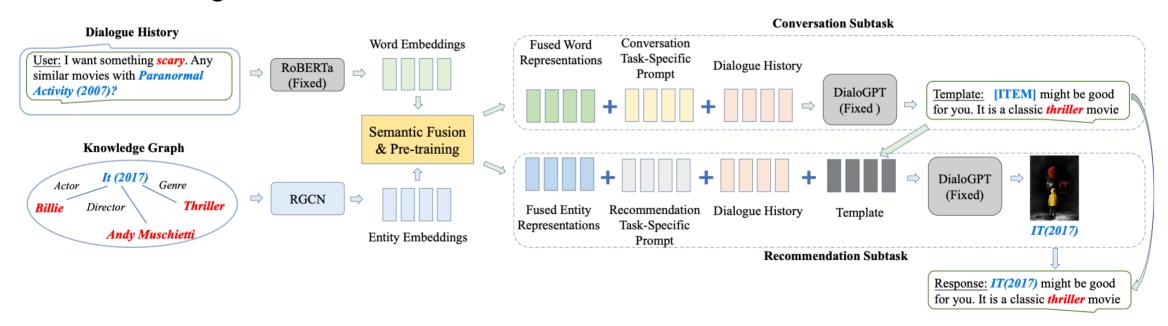
Interactive recommendation using natural language dialogues





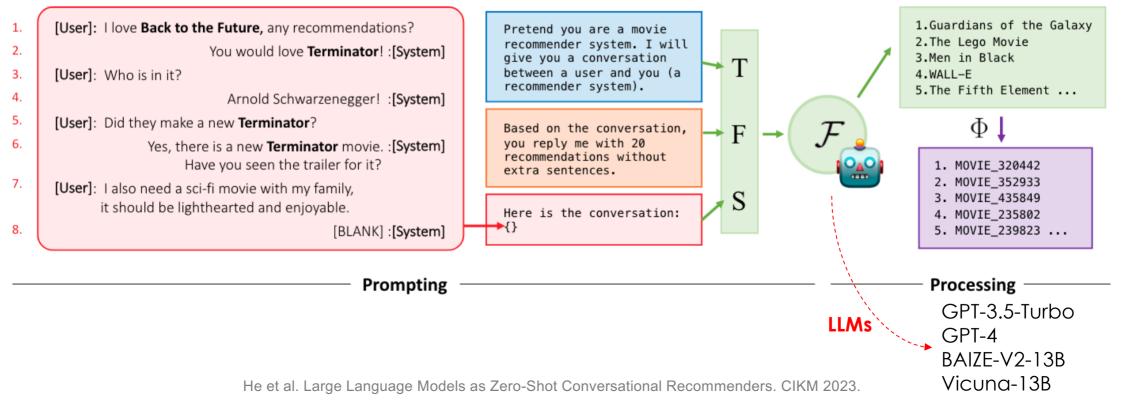
Early Works Before the Era of LLM

- Knowledge graph-based approaches (e.g., UniCRS)
 - Consists of conversation/recommendation modules while utilizing external knowledge



LLM as Conversational Recommender

• LLM as a zero-shot recommender: it is a single unified body of conversation, recommendation, and knowledge



Research Motivation

Users can request recommendations based on visual features

```
[Seeker]: I need help to find a similar jacket.

I got a red/burgundy jacket from Shopko a year or 2 before they closed.

The fabric was more like a hoodie but had button chest pockets on the shoulders.

The inner fabric was a super soft and warm fleece. It was the perfect jacket for fall or spring. I'm looking for a hoodie-like military-style jacket with chest pockets.
```

 However, existing CRS cannot provide relevant items unless they have a visual ability

Research Motivation

Visual information (image) matters

- Images capture crucial details (design, color), especially in visually-driven domains
- Leveraging images can greatly enhance recommendation performance
- However, existing CRS rely on textual features (title)

An example of Amazon product

Research Motivation

How can we design a visually-aware CRS solution?

Visually-Aware Conversational Recommendation

Given

- A multi-turn dialogue with user preferences
- A set of candidate items, each with textual + <u>visual data (images)</u>

Goal

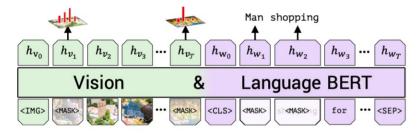
Recommend the relevant item(s) that match user's needs

Utilize vision-language models!

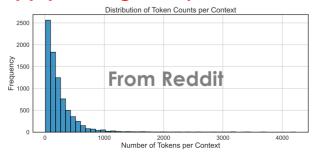
Earlier Vision-Language Models

Two types of early approaches

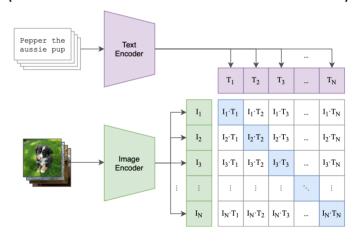
BERT-based models (VilBERT, VisualBERT, VL-BERT, UNITER, etc.)



Mostly trained on image captioning tasks: # tokens < 100 Difficult to apply to long/complex conversations



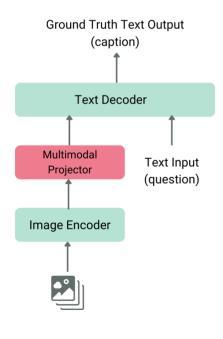
Dual-encoder contrastive models (CLIP, ALIGN, CoCa, Florence, etc.)

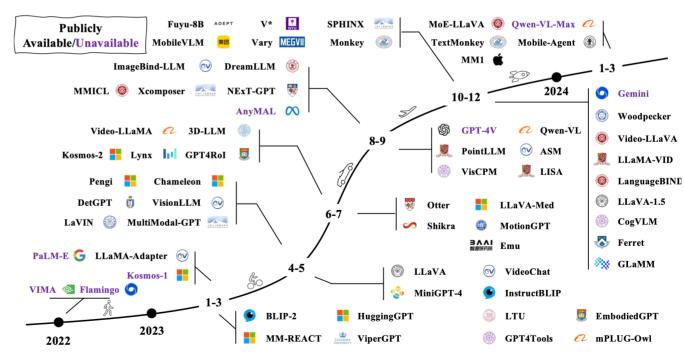


Lu et al. ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks. NeurIPS 2019.
Radford et al. Learning Transferable Visual Models From Natural Language Supervision. ICML 2021.

Large Vision-Language Models (VLMs)

- Leveraging LLMs for more complex downstream tasks
 - Vision encoder + LLM backbone

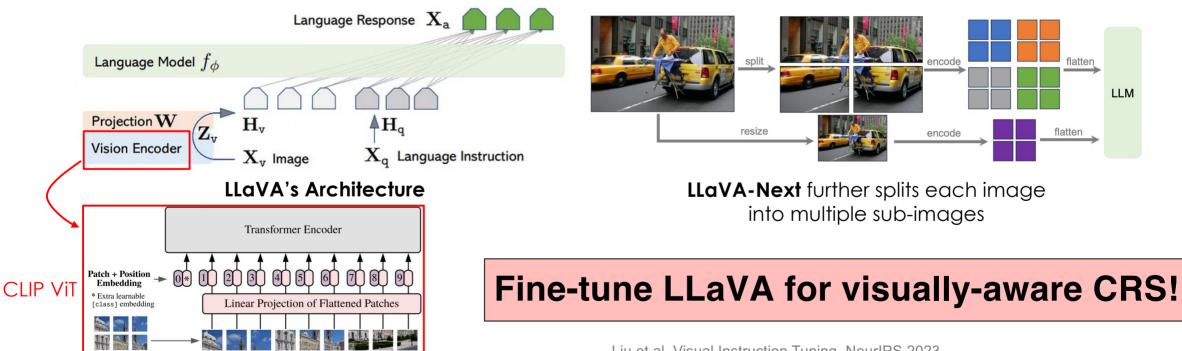




Noyan et al. Vision Language Models Explained. Hugging Face Blog 2024. Yin et al. A Survey on Multimodal Large Language Models. arXiv 2024.

Large Language and Vision Assistant (LLaVA)

- One of the most widely used VLMs in various of downstream tasks
 - Open sourced, strong performance, and handleable models available (7B)



Liu et al. Visual Instruction Tuning. NeurIPS 2023.

Challenges

- Absence of adequate datasets for visually-aware CRS
 - o Ideal: natural conversation ∩ image features

	Datasets	#Conv.	#Turns	#Items	Domain	Source	
	FacebookRec [9]	1M	6M	-	Movies	Synthetic	
	ReDial [31]	10K	182K	6.2K	Movies	Crowd-sourced	
	GoRecDial [26]	9K	170K	-	Movies	Crowd-sourced	
	OpenDialKG [47]	15K	91K	-	Movies, music, etc.	Crowd-sourced	
	TG-ReDial [70]	10K	129K	-	Movies	Synthetic	
	DuRecDial 2.0 [44]	16.5K	255K	-	Movies, music, etc.	Crowd-sourced	
	CCPE-M [49]	502	11K	-	Movies	Crowd-sourced	
S	INSPIRED [15]	1K	35K	1.9K	Movies	Crowd-sourced	
	Reddit-Movie _{base} [18]	85K	133K	24.3K	Movies	Natural	
	Reddit-Movie _{large} [18]	634K	1.6M	51.2K	Movies	Natural	
	U-NEED [43]	7K	53K	-	E-commerce	Natural	
	E-ConvRec [24]	25K	775K	-	E-commerce	Natural	
	HOOPS [13]	-	11.6M	-	E-commerce	Synthetic	
	MGConvRec [63]	7K	73K	-	Restaurant	Crowd-sourced	
	MMConv [34]	5K	39K	-	Travel	Crowd-sourced	
	MobileConvRec [45]	12.2K	156K	1.7K	Music, sports, etc.	Synthetic	

List of CRS datasets

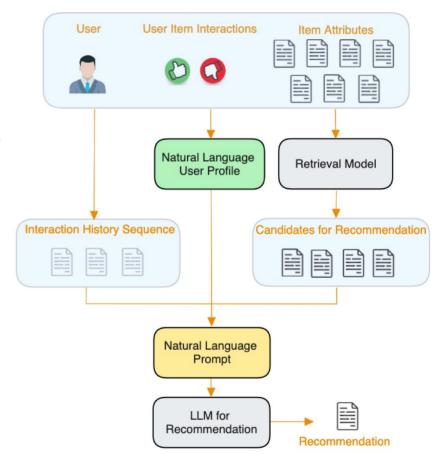
Challenges

Candidate-based recommendation

- Effectively narrow down the search space
- Suitable for domains that LLM is not familiar with

Token explosion for multiple images

- VLMs convert each image into hundreds/thousands of tokens
- Multiple candidates cause token explosion
- 。LLaVA-v1.6
 - Context length: 4K tokens, image: 2.8K tokens



Candidate-based recommendation

Reddit-Amazon Dataset

An example

Conversation for Recommendation

[Seeker]: I need help to find a similar jacket.

I got a red/burgundy jacket from Shopko a year or 2 before they closed.

The fabric was more like a hoodie but had button chest pockets on the shoulders.

The inner fabric was a super soft and warm fleece. It was the perfect jacket for fall or spring. I'm looking for a hoodie-like military-style jacket with chest pockets.

Something like a Marmot Ridgefield Sherpa hoodie?: [Recommender]

[Seeker]: That is pretty close. I can't tell if it has a zipper front though, which I'd prefer.

Levi's Men's Soft Shell Two Pocket Sherpa Lined Hooded Trucker Jacket: [Recommender]

Seeker has a complex visual preference

Item Details

[Title]: Levi's Men's Soft Shell Two Pocket Sherpa Lined Hooded Trucker Jacket

[Images]:

Recommended item is linked to the details (e.g., images)

Statistics

Dataset	# Conv.	# Turns	# Items	# Images
Beauty	7,672	22,966	5,433	28,082
Fashion	8,039	21,831	6,716	31,162
Home	3,701	6,675	3,077	18,505

Proposed Method: LaViC

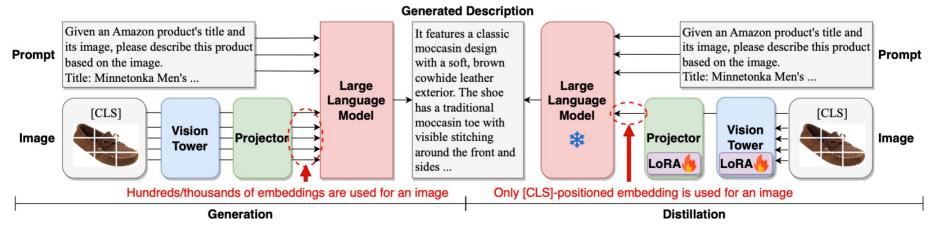
- Designed LaViC (<u>Large Vision-Language Conversational</u> Recommendation Framework)
- Overview of LaViC
 - 1) Visual Knowledge Self-Distillation
 - Compress thousands image tokens into minimal embeddings
 - 2) Recommendation Fine-Tuning
 - Incorporate visual embeddings + dialogue context into the LLMs

Visual Knowledge Self-Distillation

- How to avoid token explosion of using multiple images?
 - LLaVA-V1.6 splits each image into 577 x 5 tokens
 - Maximum context length: 4K
- Self-distillation of the visual knowledge
 - Compress each image into 5 [CLS] tokens

Minimize negative log likelihood

$$\min_{\Omega_{\text{vision}}} \sum_{i} -\log P_{\Omega_{\text{LM}} + \Omega_{\text{vision}}} \left(D_i \mid \mathcal{T}_{\text{desc}}, \{ \mathbf{cls}_{i,r} \}_{r=1}^5 \right)$$

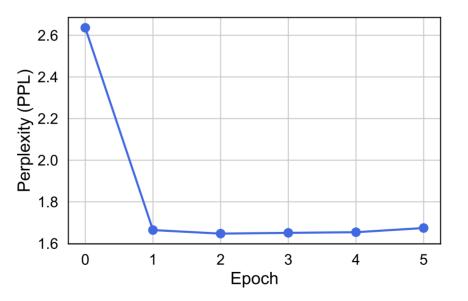


Example of Description Generation

Image	Domain	Title	Description generated by LLaVA-v1.6			
	Fashion	LYANER Women's Pajamas Set 4pcs Satin Silk Cami Top Button Down Loungewear Pjs Set	The product is a women's pajama set made of satin silk, consisting of four pieces. The set includes: 1. A button-down long-sleeve top with a collar and black piping details. 2. A cami top with thin spaghetti straps. 3. A pair of long pants with an elastic waistband. 4. A pair of shorts with an elastic waistband. The fabric has a smooth, shiny finish and features a pink base color with a tropical print, including leaves and flowers in shades of blue, white, and black. The overall design is elegant and comfortable, suitable for lounging and sleeping.			
	Fashion	Super Mario Bros Classic Retro NES Design Bi-fold Wallet	The product is a bi-fold wallet designed with a retro theme inspired by the classic Super Mario Bros game for the NES (Nintendo Entertainment System). The wallet features a design that mimics the appearance of an NES game cartridge, with the iconic Super Mario Bros label prominently displayed on the front. The label includes pixelated graphics reminiscent of the original game, along with the Nintendo logo and other classic design elements. The wallet appears to be made of a material that resembles the texture and color of an NES cartridge, giving it a nostalgic and vintage look.			

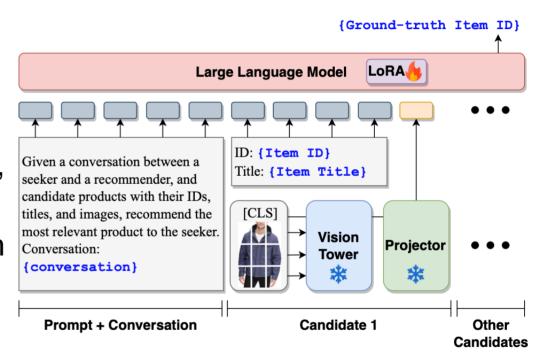
Perplexity on Visual Knowledge Self-Distillation

The validation PPL reaches a plateau after 1-2 epochs



Recommendation Fine-Tuning

- Candidate-based pipeline
 - Retrieved top-10 items using SBERT
 - Title-dialogue matching
 - For each candidate, we provide {ID, Title, [CLS], ...} as input
 - LLM is trained to answer the ground-truth item ID
- Training only LLM parameters
 - Freeze vision tower and projector
 - LoRA is adapted for LLM



$$\min_{\Omega_{\text{LM}}} \sum_{(\mathcal{T}_{\text{conv}}, I_{\text{cand}})} -\log P_{\Omega_{\text{LM}} + \Omega_{\text{vision}}} \left(ID_{i^*} \mid \mathcal{T}_{\text{conv}}, \{\mathbf{X}_{i_j}\}_{j=1}^{10} \right)$$

Minimize negative log likelihood

Experimental Setup

Datasets

- Reddit-Amazon (Beauty, Fashion, Home)
 - Each item has title + image(s)

Baselines

- Retrieval-based: BM25, SBERT, RoBERTa, SimCSE, BLaIR
- Generative: Vicuna, LLaVA, GPT-3.5, GPT-40

Implementation

Single A100 40GB GPU, LoRA, batch size=4 (distill), 1 (prompt)

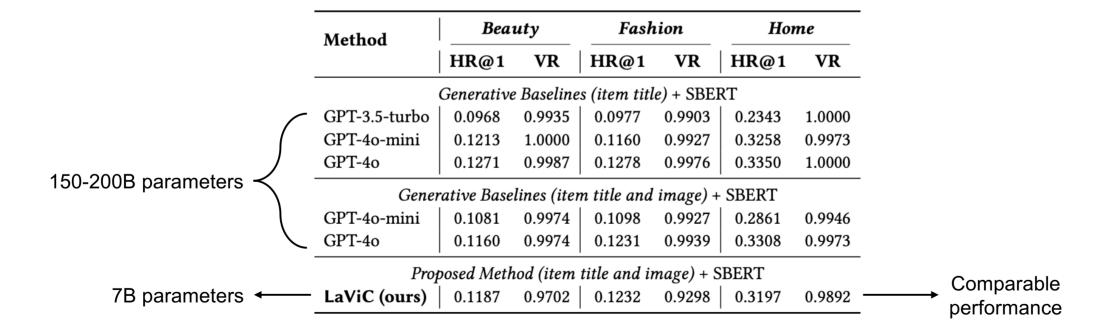
Evaluation Metrics

- HitRatio@1 (HR@1): correct item selection rate
- ValidRatio (VR): valid item ID output (no hallucination)

Comparison w/ open-source methods

	Method	Beauty Fashion Home		ne				
	1/10011011	HR@1	VR	HR@1	VR	HR@1	VR	
	BM25							
	SBERT	0.0551	-	0.0681	-	0.2166	-	
	RoBERTa _{large}	0.0640	-	0.0631	-	0.1814	-	
	SimCSE _{large}	0.0326	-	0.0301	-	0.0957	-	
	BLaIR _{base}	0.0371	-	0.0441	-	0.1335	-	
	(Generative						
	Vicuna-v1.5	0.0533	0.9870	0.0481	0.9903	0.1184	1.0000	
	LLaVA-v1.5	0.0476	0.9896	0.0441	0.9855	0.0932	1.0000	
	LLaVA-v1.6	0.0770	0.9870	0.0827	0.9867	0.2030	0.9919	
D. navamatava	Gener	ative Basel	ines (iten					
'B parameters ≺	LLaVA-v1.5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
\	LLaVA-v1.6	0.0584	0.9741	0.0459	0.9843	0.1089	0.9919	
	Proposed Method (item title and in							
	LaViC (ours)	0.1187	0.9702	0.1232	0.9298	0.3197	0.9892	→ Outperforms the o
	Improvement	+54.2%	-	+49.0%	-	+47.6%	-	

Comparison w/ proprietary methods



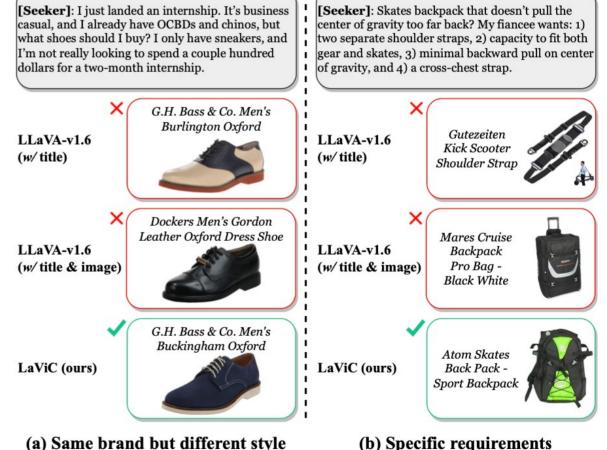
Ablation study

- o "Entire tokens" use all tokens for each image
- 。 "w/o images" use only item titles
- o "w/o self-distillation" use [CLS] tokens but without self-distillation

Method	Beauty		Fask	iion	Ноте	
	HR@1	VR	HR@1	VR	HR@1	VR
Entire tokens (5 \times 577)	0.0256	0.9456	o.o.m.		o.o.m.	
w/o images	0.0972	0.9767	0.1022	0.9358	0.2944	0.9946
w/o self-distillation	0.0842	0.9793	0.1084	0.9649	0.2861	0.9973
LaViC (ours)	0.1187	0.9702	0.1232	0.9298	0.3197	0.9892

Case study

- (a) LaViC captures subtle visual attributes (color, design) not evident in the item title
- (b) LaViC captures additional details such as extra straps or shape using compressed image tokens



b) Specific requirement

Conclusion

- Address the visually-aware conversational recommendation
- Propose a novel framework: LaViC
 - Large vision-language model-based framework
 - Visual knowledge self-distillation
 - Recommendation fine-tuning
- Open-source the benchmark datasets

