Adapting Large Vision-Language Models to **Visually-Aware Conversational Recommendation**

Hyunsik Jeon ¹, Satoshi Koide ², Yu Wang ¹, Zhankui He ³, Julian McAuley ¹

¹UC San Diego ²Toyota Research ³Google DeepMind

Code & Datasets

-Introduction

- Conversational Recommender Systems (CRS) deliver personalized items through interactive, multi-turn dialogue
- Real user requests frequently include visual requirements (e.g., "1") need a backpack with red straps"), which text-only CRS cannot resolve reliably.
- We define Visually-Aware Conversational Recommendation (VACR): given the dialogue history and a catalog of candidate items, each with a title and images, select the single item that best satisfies the user's current request.

Key Challenges

- · Adapting a large vision-language model to VACR surfaces two practical hurdles:
- > Data scarcity for visual dialogues Natural conversations that explicitly reference item images are still rare
- > Context-length pressure With a large VLM, each image expands to thousands of tokens; evaluating many candidate items in one shot can overflow the predefined token window (e.g., 4k for LLaVA v1.6)

Reddit-Amazon Dataset

• We open-source Reddit-Amazon dataset for VACR benchmark

Proposed Framework: LaViC

- · We propose LaViC (Large Vision-Language Conversational Recommendation Framework)
 - > Visual knowledge self-distillation
 - ✓ Compress thousands of tokens of each image into 5 [CLS] tokens using self-distillation

- > Recommendation finetuning
- Feed {ID, Title, [CLS]_{1...5}} along with the dialogue to a Large Vision-Language Model (e.g., LLaVA) and update via LoRA.

Key Results

· Datasets (Reddit-Amazon)

Dataset	# Conv.	# Turns	# Items	# Images	
Beauty	7,672	22,966	5,433	28,082	
Fashion	8,039	21,831	6,716	31,162	
Home	3.701	6.675	3.077	18.505	

- Evaluation
- ➤ Hit ratio (HR@1) for accuracy
- Validation (VR) to detect hallucinations

· Comparison w/ open-source methods

	Method	Beauty		Fashion		Home	
		HR@1	VR	HR@1	VR	HR@1	VR
		Retri	eval Base	lines (item	title)		
	BM25	0.0169	-	0.0140	-	0.0479	-
	SBERT	0.0551	-	0.0681	-	0.2166	-
	RoBERTalarge	0.0640	-	0.0631	-	0.1814	-
	SimCSE _{large}	0.0326	-	0.0301	-	0.0957	-
	BLaIR _{base}	0.0371	-	0.0441	-	0.1335	-
	(Generative	Baseline:	s (item title	e) + SBEI	RT	
	Vicuna-v1.5	0.0533	0.9870	0.0481	0.9903	0.1184	1.0000
	LLaVA-v1.5	0.0476	0.9896	0.0441	0.9855	0.0932	1.0000
	LLaVA-v1.6	0.0770	0.9870	0.0827	0.9867	0.2030	0.9919
7B√	Generative Baselines (item title and image) + SBERT						
107	LLaVA-v1.5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1	LLaVA-v1.6	0.0584	0.9741	0.0459	0.9843	0.1089	0.9919
\	Prop	osed Meth	od (item :	title and in	nage) + S	BERT	
	LaViC (ours)	0.1187	0.9702	0.1232	0.9298	0.3197	0.9892
	Improvement	+54.2%	-	+49.0%	-	+47.6%	-

Comparison w/ proprietary methods

· Ablation study

Method	Beauty		Fashion		Home	
Method	HR@1	VR	HR@1	VR	HR@1	VR
Entire tokens (5 × 577)	0.0256	0.9456	0.0.m.		0.0.m.	
w/o images	0.0972	0.9767	0.1022	0.9358	0.2944	0.994
w/o self-distillation	0.0842	0.9793	0.1084	0.9649	0.2861	0.9973
LaViC (ours)	0.1187	0.9702	0.1232	0.9298	0.3197	0.989

Case Study

- (a) LaViC captures subtle visual attributes (color, design) not evident in the item title
- · (b) LaViC captures additional details such as extra straps or shape using compressed image tokens

Contribution

- LaViC first unified pipeline that adapts a Large Vision-Language Model to conversational recommendation
- Token-efficient visual distillation breaks the context-length barrier
- · We release Reddit-Amazon visually-aware CRS benchmark to the community
- Achieves state-of-the-art accuracy with commodity-scale (7B) parameters