

Calibration-Disentangled Learning and Relevance-Prioritized Reranking for Calibrated Sequential Recommendation

Hyunsik Jeon, Se-eun Yoon, Julian McAuley

UC San Diego

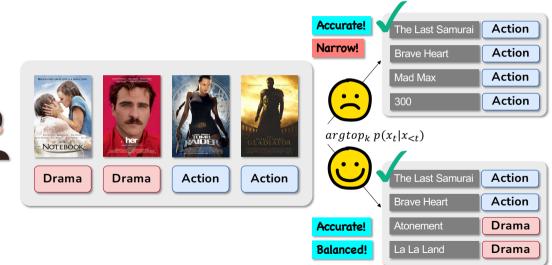
Proposed Method

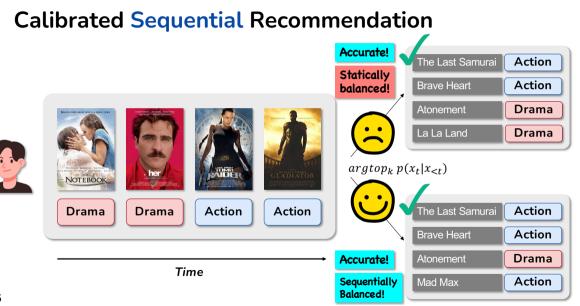
Experiments

Conclusion and Future Work

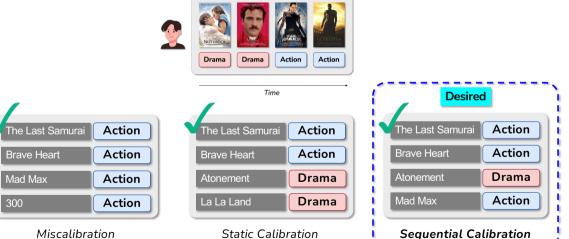
Recommendation

Calibrated Recommendation





Calibrated Sequential Recommendation



Static Calibration

Problem Definition

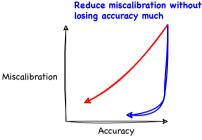
• Given user *u*'s interactions:

 $\mathcal{S}^u = (s_1^u, s_2^u, \dots, s_T^u)$

- $\circ s_t^u$ is user u's interacted item at t
- The goal is to recommend an item list at T + 1:

$$\mathcal{R}^u = (r_1^u, r_2^u, \dots, r_K^u)$$

- $\circ r_k^u$ is kth recommended item for user u
- Desired performance
 - $_{\circ}\,$ High accuracy (i.e., nDCG)



Category distribution in user history (recent interactions are more weighted)

CG)

$$\mathcal{S}_{KL}(u) = KL(p \| \tilde{q}) = \sum_{c \in C} p(c|u) \log \frac{p(c|u)}{\tilde{q}(c|u)}$$

Category distribution in recommendation

Limitations of Previous Methods

- Most of previous methods have focused only on reranking
 - CaliRec: a greedy approach
 - $_{\circ}\,$ MIP: a mixed integer programming
 - $_{\circ}\,$ MCF: a minimum-cost flow algorithm

What if the backbone model's training is not aligned with the reranking objectives?

Improving calibration may lead to a significant loss in accuracy.

• A recent method, DACSR, utilized an end-to-end approach, but the calibration is optimized for the entire items

It cannot guarantee the calibration performance for top-k recommendations

Introduction

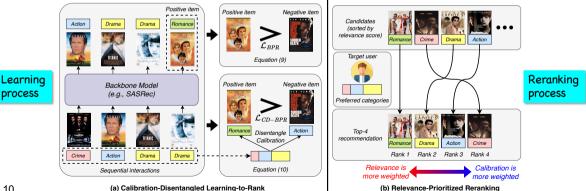
Proposed Method

Experiments

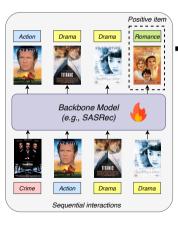
Conclusion and Future Work

Overall Process

 We propose LeapRec (Calibration-Disentangled Learning and **Relevance-Prioritized Reranking**)



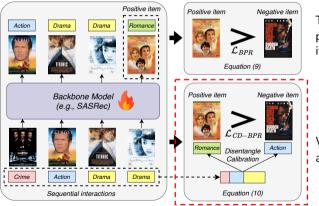
Learning to Rank



 $p(s_{T+1}^u = v | \mathcal{S}^u),$ where $\mathcal{S}^u = (s_1^u, s_2^u, \dots, s_T^u)$ is a sequential history and v is an item

What if the calibration is applied in the reranking phase?

Calibration-Disentangled Learning-to-Rank

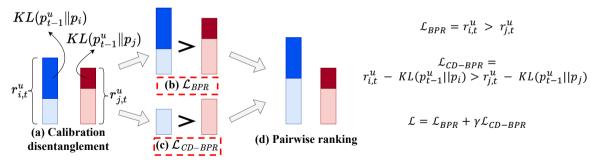


This interaction indicates that the user prefers the positive item over the negative item, **even considering their categories**

We disentangle miscalibration scores, and learn-to-rank using them as well

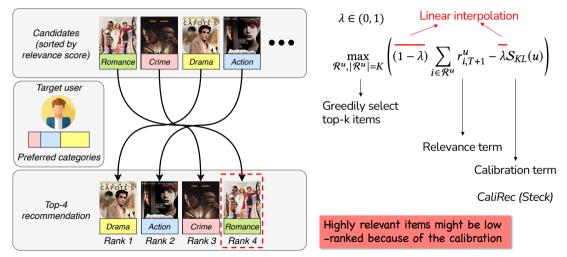
Calibration-Disentangled Learning-to-Rank

• Disentangle the calibration term and learn pairwise rankings

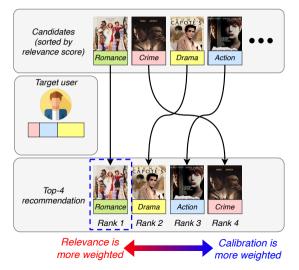


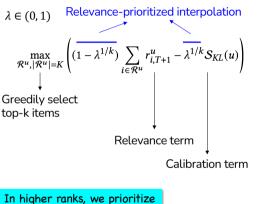
 $r_{i,t}^{u}$: score between user u and item i at step t

Reranking



Relevance-Prioritized Reranking





relevance over calibration

Introduction

Proposed Method

Conclusion and Future Work

Experimental Settings

Datasets

Dataset	# Users	# Items	# Categories	# Interactions	Avg. sequence len.	User-item density	Avg. # categories
ML-1M	6,038	3,883	18	575,281	95.28	0.0245	1.6503
Goodreads	16,765	25,474	10	954,958	56.96	0.0022	3.6269
Grocery	54,882	39,853	26	438,681	7.99	0.0002	1.0000
Steam	242,223	14,419	22	2,732,749	11.29	0.0008	2.6242

Evaluation Metrics

- $_{\circ}$ nDCG@10 (\uparrow): for accuracy
- $_{\circ} S_{KL}$ @10 (\downarrow): for calibration

Experimental Settings

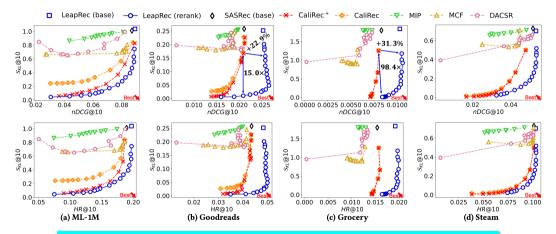
Backbone model

 $_{\circ}$ SASRec, Caser, and BERT4Rec

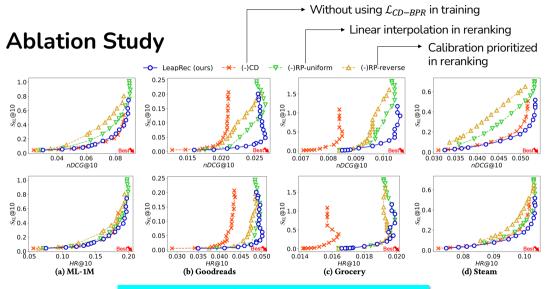
Baselines

- CaliRec: reranking-only (greedy), static calibration
- CaliRec⁺: reranking-only (greedy), sequential calibration
- MIP: reranking-only (integer programming)
- MCF: reranking-only (minimum-cost flow)
- $_{\circ}$ DACSR: end-to-end training

Performance Comparison



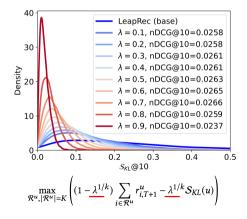
LeapRec (ours) outperforms the baselines by drawing way better trade-off curves!



All ideas in LeapRec (ours) help improve the performance!

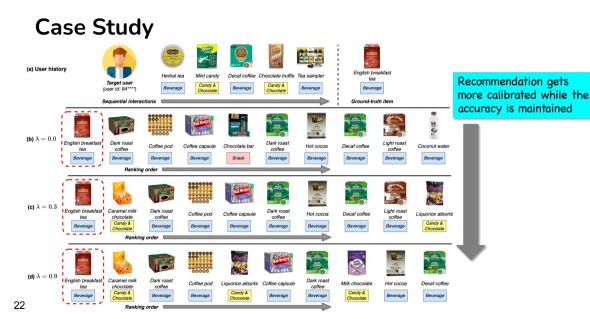
Hyperparameter Effect

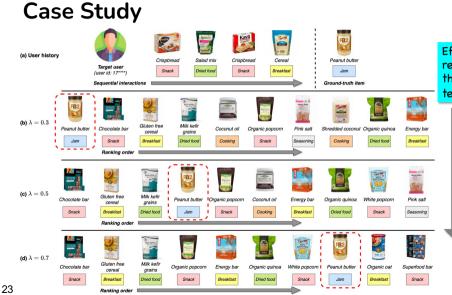
• Kernel density estimation (KDE) of $S_{KL}@10$ on Goodreads



As λ increases, recommendations become more uniformly calibrated for entire users

The accuracy also increases until λ reaches 0.7





Effectively reflects relevance even for an item that is from a non-interac ted category

Introduction

Proposed Method

Experiments

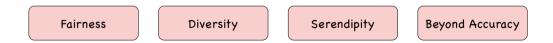
Conclusion and Future Work 🔫

Summary

- Calibrated sequential recommendation: we focus on the problem that is practically crucial but not widely studied before
- LeapRec (ours): the proposed method outperforms previous methods in extensive experiments
- Further analysis: we showed our main ideas help improve the performance and showed case studies to verify how it is practical

Future Directions

- Our reranking-aware learning approach could be a general solution to multi-objective recommendations
- Relevance priority is also important in multi-objective recommendations



Thanks!

https://arxiv.org/pdf/2408.02156

https://github.com/jeon185/LeapRec

in https://www.linkedin.com/in/jeon185