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Calibrated Recommendation
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Calibrated Sequential Recommendation
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Calibrated Sequential Recommendation
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Problem Definition

• Given user 𝑢’s interactions:
𝒮! = (𝑠"! , 𝑠#! , … , 𝑠$!)

o 𝑠%! is user 𝑢’s interacted item at 𝑡
• The goal is to recommend an item list at 𝑇 + 1:

ℛ! = (𝑟"! , 𝑟#! , … , 𝑟&!)
o 𝑟'

! is 𝑘th recommended item for user 𝑢
• Desired performance

o High accuracy (i.e., nDCG)
o Low miscalibration

Accuracy

Miscalibration

Reduce miscalibration without
losing accuracy much

Category distribution in recommendation

Category distribution in user history
(recent interactions are more weighted)
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Limitations of Previous Methods

• Most of previous methods have focused only on reranking
o CaliRec: a greedy approach
o MIP: a mixed integer programming
o MCF: a minimum-cost flow algorithm

• A recent method, DACSR, utilized an end-to-end approach, but 
the calibration is optimized for the entire items

What if the backbone model’s training
is not aligned with the reranking objectives?

Improving calibration may lead to
a significant loss in accuracy.

It cannot guarantee the calibration performance for top-k recommendations
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Overall Process

• We propose LeapRec (Calibration-Disentangled Learning and 
Relevance-Prioritized Reranking)

Backbone Model
(e.g., SASRec)

Crime Action Drama

Action Drama Drama

(a) Calibration-Disentangled Learning-to-Rank

Drama

Romance

Positive item Negative item

(b) Relevance-Prioritized Reranking

Equation (9)

Positive item Negative item

Equation (10)

Romance ActionDisentangle
Calibration

Positive item

Sequential interactions

Action

Candidates
(sorted by

relevance score)
Drama

Drama Action

Top-4
recommendation

Relevance is
more weighted

Calibration is
more weighted

Romance

Romance

Crime

Crime

Target user

Preferred categories

Rank 1 Rank 2 Rank 3 Rank 4

Learning
process

Reranking
process
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Learning to Rank

Backbone Model
(e.g., SASRec)

Crime Action Drama

Action Drama Drama

Drama

Romance

Positive item Negative item

Equation (9)

Positive item

Sequential interactions

𝑝 𝑠$%&' = 𝑣 𝒮' ,
where 𝒮' = 𝑠&', 𝑠(', … , 𝑠$' is a sequential history and 𝑣 is an item

What if the calibration is applied in the reranking phase?

We cannot assure that the positive item remains in higher ranking
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Calibration-Disentangled Learning-to-Rank

Backbone Model
(e.g., SASRec)

Crime Action Drama

Action Drama Drama

(a) Calibration-Disentangled Learning-to-Rank

Drama

Romance

Positive item Negative item

(b) Relevance-Prioritized Reranking

Equation (9)

Positive item Negative item

Equation (10)

Romance ActionDisentangle
Calibration

Positive item

Sequential interactions

Action

Candidates
(sorted by

relevance score)
Drama

Drama Action

Top-4
recommendation

Relevance is
more weighted

Calibration is
more weighted

Romance

Romance

Crime

Crime

Target user

Preferred categories

Rank 1 Rank 2 Rank 3 Rank 4

This interaction indicates that the user
prefers the positive item over the negative
item, even considering their categories

We disentangle miscalibration scores,
and learn-to-rank using them as well
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Calibration-Disentangled Learning-to-Rank

• Disentangle the calibration term and learn pairwise rankings

(a) Calibration
disentanglement

(b) 

(c) (d) Pairwise ranking

ℒ)*+ = 𝑟,,!
' > 𝑟.,!

'

ℒ/01)*+ =
𝑟,,!
' − 𝐾𝐿 𝑝!1&' | 𝑝,) > 𝑟.,!

' − 𝐾𝐿(𝑝!1&' ||𝑝.)

𝑟,,!' : score between user 𝑢 and item 𝑖 at step 𝑡

ℒ = ℒ)*+ + 𝛾ℒ/01)*+
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Reranking

Action

Candidates
(sorted by

relevance score)
Drama

Drama Action

Top-4
recommendation

Romance Crime

Crime

Target user

Preferred categories

Rank 1 Rank 2 Rank 3 Rank 4
Romance

CaliRec (Steck)

Greedily select
top-k items

Relevance term

Calibration term

Linear interpolation

Highly relevant items might be low
-ranked because of the calibration

𝜆 ∈ (0, 1)
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Relevance-Prioritized Reranking

Greedily select
top-k items

Relevance term

Calibration term

Relevance-prioritized interpolation

Action

Candidates
(sorted by

relevance score)
Drama

Drama Action

Top-4
recommendation

Relevance is
more weighted

Calibration is
more weighted

Romance

Romance

Crime

Crime

Target user

Rank 1 Rank 2 Rank 3 Rank 4
In higher ranks, we prioritize 
relevance over calibration 

𝜆 ∈ (0, 1)
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Experimental Settings

• Datasets

• Evaluation Metrics
o nDCG@10 (↑): for accuracy
o 𝒮?@@10 (↓): for calibration
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Experimental Settings

• Backbone model
o SASRec, Caser, and BERT4Rec

• Baselines
o CaliRec: reranking-only (greedy), static calibration
o CaliRec+: reranking-only (greedy), sequential calibration
o MIP: reranking-only (integer programming)
o MCF: reranking-only (minimum-cost flow)
o DACSR: end-to-end training
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Performance Comparison

LeapRec (ours) outperforms the baselines by drawing way better trade-off curves!
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Ablation Study

All ideas in LeapRec (ours) help improve the performance!

Without using ℒ/01)*+ in training

Linear interpolation in reranking
Calibration prioritized
in reranking
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Hyperparameter Effect

• Kernel density estimation (KDE) of 𝒮?@@10 on Goodreads

As 𝜆 increases, recommendations become 
more uniformly calibrated for entire users

The accuracy also increases until 𝜆 reaches 0.7
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Case Study

Recommendation gets
more calibrated while the 
accuracy is maintained
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Case Study
Effectively reflects
relevance even for an item 
that is from a non-interac
ted category
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Summary

• Calibrated sequential recommendation: we focus on the 
problem that is practically crucial but not widely studied before
• LeapRec (ours): the proposed method outperforms previous 

methods in extensive experiments
• Further analysis: we showed our main ideas help improve the 

performance and showed case studies to verify how it is practical
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Future Directions

• Our reranking-aware learning approach could be a general 
solution to multi-objective recommendations

• Relevance priority is also important in multi-objective 
recommendations

Fairness Diversity Serendipity Beyond Accuracy



Thanks!

https://arxiv.org/pdf/2408.02156

https://github.com/jeon185/LeapRec

https://www.linkedin.com/in/jeon185


