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ABSTRACT

Calibrated recommendation, which aims to maintain personal-
ized proportions of categories within recommendations, is crucial
in practical scenarios since it enhances user satisfaction by reflect-
ing diverse interests. However, achieving calibration in a sequential
setting (i.e., calibrated sequential recommendation) is challenging
due to the need to adapt to users’ evolving preferences. Previous
methods typically leverage reranking algorithms to calibrate recom-
mendations after training a model without considering the effect
of calibration and do not effectively tackle the conflict between
relevance and calibration during the reranking process. In this
work, we propose LeapRec (Calibration-Disentangled Learning
and Relevance-Prioritized Reranking), a novel approach for the cal-
ibrated sequential recommendation that addresses these challenges.
LeapRec consists of two phases, model training phase and rerank-
ing phase. In the training phase, a backbone model is trained using
our proposed calibration-disentangled learning-to-rank loss, which
optimizes personalized rankings while integrating calibration con-
siderations. In the reranking phase, relevant items are prioritized at
the top of the list, with items needed for calibration following later
to address potential conflicts between relevance and calibration.
Through extensive experiments on four real-world datasets, we
show that LeapRec consistently outperforms previous methods in
the calibrated sequential recommendation. Our code is available at
https://github.com/jeon185/LeapRec.
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Category preference
shifts over time

(a) ML-1M

0 2 4 6 8 10 12 14 16 18 20
Sequence Interval

0.0

0.1

0.2

0.3

0.4

KL
 D

iv
er

ge
nc

e

(b) Steam

Figure 1: KL divergence analysis of user-interacted category

distributions over sequence intervals, employing a window

size of 20 for each category distribution. This plot illustrates

the shifts in category preferences over time in real-world

datasets: ML-1M and Steam. Detailed data statistics are sum-

marized in Table 1.
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1 INTRODUCTION

Calibrated recommendation aims to reflect a user’s diverse inter-
ests within a recommendation list by maintaining the proportions
of various categories observed in past interactions [1, 3, 38, 39].
For instance, if a user has historically watched 70% drama and 30%
action movies, calibrated recommendation should suggest a list
of movies maintaining a similar genre ratio. This problem differs
from studies like [27, 44, 46] that define calibration in terms of
probability-based user preference estimation, such as estimating
how likely a user will prefer an item. To achieve the calibrated
recommendation, two potentially conflicting objectives must be
addressed: 1) relevance, which aligns with the user’s current pref-
erences, and 2) calibration, which sustains consistency with their
long-term category interests. This challenge becomes particularly
significant in sequential settings (i.e., calibrated sequential rec-
ommendation) where users’ category preferences shift over time.
These dynamic shifts in preferences are depicted in Figure 1, where
the Kullback–Leibler (KL) divergence between category distribu-
tions increases as the sequence interval extends, highlighting the
intricate challenge of balancing relevance with calibration.

Existing work on calibrated recommendation focuses on post-
processing approaches [1, 38, 39]. Specifically, a recommendation
model is first trained to meet the relevance objective; then, the
model output is reranked to meet the calibration objective. The
difference between these methods lies in reranking, such as greedy
(CaliRec [39]), mixed integer programming (MIP [38]), andminimum-
cost flow (MCF [1]) algorithms. However, applying calibration dur-
ing reranking can lead to degradation of accuracy because they do
not consider the impacts of calibration during the training phase.

https://github.com/jeon185/LeapRec
https://doi.org/10.1145/3627673.3679728
https://doi.org/10.1145/3627673.3679728
https://doi.org/10.1145/3627673.3679728
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Hence, these methods encounter challenges in maintaining the
accuracy of recommendations in the reranking phase, since the
changes required for calibration can conflict with the relevance-
based ranking criteria, especially in sequential settings where cat-
egory preference shifts over time as shown in Figure 1. Recently,
DACSR [3] introduced an end-to-end model designed to optimize
both relevance and calibration during the training phase. However,
DACSR optimizes the calibration across the entire item set to ensure
the loss function is differentiable although the primary goal is to
calibrate the top-𝑘 recommendations. As a result, DACSR strug-
gles to simultaneously optimize for both accuracy and calibration,
particularly for the top-𝑘 recommendations.

In this work, we propose LeapRec (Calibration-Disentangled
Learning and Relevance-Prioritized Reranking), a method that con-
siderably improves upon previous work by novel training and
reranking schemes. First, LeapRec learns to disentangle calibra-
tion from relevance during the training phase by optimizing our
proposed calibration-disentangled learning-to-rank loss. This ap-
proach enables the model to learn rankings adaptable to changes
in calibration, allowing for accurate ranking even when calibration
is extensively considered. Consequently, even when calibration
adjustments are applied during reranking, the calibration is ef-
fectively enhanced without sacrificing much accuracy. After the
training phase, LeapRec further optimizes for relevance and cali-
bration through our proposed relevance-prioritized reranking. This
approach prioritizes placing relevant items at the top of the recom-
mendation list while maintaining calibration across the entire list.
This strategy effectively mitigates the risk of excluding items from
categories previously unexplored by users, a limitation encountered
with previous calibration objectives.

Our contributions are as follows:

• We propose a novel learning method to effectively disentangle
calibration from relevance in the training phase, thus enabling
us to facilitate adaptable ranking under varying calibration
considerations.
• We propose a novel reranking scheme that effectively enhances
relevance and calibration by prioritizing relevant items while
ensuring consistent calibration across the list.
• We conduct extensive experiments on four real-world datasets
and show that LeapRec achieves superior performance com-
pared to existing approaches.

2 PRELIMINARIES

2.1 Problem Definition

The problem of calibrated sequential recommendation is defined
as follows. LetU,I, and C be the sets of users, items, and categories,
respectively. Each item 𝑖 ∈ I is associated with a set of categories
C𝑖 = {𝑐𝑖1, 𝑐

𝑖
2, ..., 𝑐

𝑖
𝑁
}, where each 𝑐𝑖𝑛 ∈ C represents a category of

item 𝑖 , and𝑁 is the number of categories, varying per item. For each
user 𝑢 ∈ U, we have sequential interactions S𝑢 = (𝑠𝑢1 , 𝑠

𝑢
2 , . . . , 𝑠

𝑢
𝑇
),

where 𝑠𝑢𝑡 ∈ I is user 𝑢’s interacted item at step 𝑡 , and𝑇 denotes the
length of the sequence which varies among users. Given sequences
S𝑢 of all users 𝑢 ∈ U, our goal is to recommend each user an
item list R𝑢 = (𝑟𝑢1 , 𝑟

𝑢
2 , . . . , 𝑟

𝑢
𝐾
) that is relevant to the user’s future

needs (i.e., accurate), while reflecting the user’s sequential category
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Figure 2: Given user history (a), sequential calibration (d)

applies more weight to recent category preference, in con-

trast to recommendation without calibration (b) and static

calibration (c).

interests with their appropriate proportions (i.e., sequentially cali-
brated), at step 𝑇 + 1; 𝑟𝑢

𝑘
∈ I is the 𝑘’th recommended item to user

𝑢 where lower 𝑘 indicates higher rank. The metrics for measuring
the degree of calibration are detailed in Section 2.2.

The primary challenge in calibrated sequential recommenda-
tion lies in adeptly balancing the often conflicting demands of
relevance, which reflects a user’s immediate preferences, and cali-
bration, which ensures consistency with their long-term category
interests. This task is further complicated by the constantly evolv-
ing nature of user preferences.

2.2 Calibration Metrics for Sequential

Recommendation

The degree of calibration is measured by comparing the cate-
gory distributions of items in a user’s past interactions and items
in their recommended list [39]. Specifically, it is defined as the
divergence between these two distributions (i.e., miscalibration),
where a lower value indicates superior calibration performance.
Steck [39] proposed metrics for miscalibration under various crite-
ria such as whether the user interactions are treated as equally or
weighted regarding their recency, as illustrated in Figure 2. In this
work, we adopt sequential miscalibration as our calibration metric,
specifically tailored for sequential recommendations. This metric
is described in the following definition.
Definition 1 (Sequential miscalibration): Given user 𝑢’s sequential
interactions S𝑢 and the user’s recommendation list R𝑢 , the sequential
miscalibration S𝐾𝐿 (𝑢) is defined as follows:

S𝐾𝐿 (𝑢) = KL(𝑝 ∥𝑞) =
∑︁
𝑐∈C

𝑝 (𝑐 |𝑢) log 𝑝 (𝑐 |𝑢)
𝑞(𝑐 |𝑢) , (1)

where

𝑝 (𝑐 |𝑢) =
∑
𝑠𝑢𝑡 ∈S𝑢 𝛼

𝑇−𝑡 · 𝑝 (𝑐 |𝑠𝑢𝑡 )∑
𝑠𝑢𝑡 ∈S𝑢 𝛼

𝑇−𝑡 , (2)

𝑞(𝑐 |𝑢) =
∑
𝑟𝑢
𝑘
∈R𝑢 𝑝 (𝑐 |𝑟𝑢𝑘 )
|R𝑢 | , (3)

𝑞(𝑐 |𝑢) = (1 − 𝛽)𝑞(𝑐 |𝑢) + 𝛽𝑝 (𝑐 |𝑢), (4)
KL(·) indicates the Kullback–Leibler (KL) divergence between two
distributions, 𝑇 = |S𝑢 |, and 𝛼, 𝛽 ∈ (0, 1) are hyperparameters.

In Equations (2) and (3), 𝑝 (𝑐 |𝑠𝑢𝑡 ) and 𝑝 (𝑐 |𝑟𝑢𝑘 ) are the category dis-
tributions of items 𝑠𝑢𝑡 , 𝑟

𝑢
𝑘
∈ I, respectively. If an item is associated

with multiple categories, each category is equally weighted in the
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Figure 3: LeapRec consists of two phases: (a) calibration-disentangled learning-to-rank and (b) relevance-prioritized reranking.

In the first phase, a backbone model is trained to optimize personalized rankings, accommodating both with and without

calibration considerations. In the second phase, items are greedily added to the recommendation list, where relevance is

prioritized at higher ranks and calibration at lower ranks.

distribution. In Equation (2), 𝛼 (e.g., 0.9) enables us to consider re-
cent interests more weighted to the calibration, thus differentiating
this metric from static miscalibration. In Equation (4), we modify
𝑞(𝑐 |𝑢) to 𝑞(𝑐 |𝑢) = (1 − 𝛽)𝑞(𝑐 |𝑢) + 𝛽𝑝 (𝑐 |𝑢) with a small value of 𝛽
(e.g., 0.01), ensuring the KL divergence remains well-defined and
does not diverge, as in previous work [39].

3 PROPOSED METHOD

In this section, we describe LeapRec (Calibration-Disentangled
Learning and Relevance-Prioritized Reranking), a novel approach
for calibrated sequential recommendation. Figure 3 depicts the
overall process of LeapRec, which consists of two phases: model
training phase and reranking phase. During the training phase,
LeapRec employs a sequential recommendation model, such as
SASRec [20], as its backbone. It optimizes our proposed calibration-
aware learning-to-rank loss, which is designed to disentangle cal-
ibration from relevance, enabling the model to estimate accurate
personalized rankings regardless of whether calibration is consid-
ered. During the reranking phase, LeapRec applies our proposed
relevance-prioritized reranking algorithm. This algorithm adjusts
the model’s output for each user to reduce miscalibration, while
prioritizing the most relevant items in the final recommendations.

3.1 Calibration-Disentangled Learning-to-Rank

The objective of the training phase is to train a sequential model
that can predict the probability a user will interact with an item
based on their past interactions. Formally, given a user𝑢’s sequence
of interactions S𝑢 = (𝑠𝑢1 , 𝑠

𝑢
2 , . . . , 𝑠

𝑢
𝑇
) where 𝑠𝑢𝑡 ∈ I is the interacted

item at step 𝑡 , the model aims to estimate the probability for all
items 𝑣 ∈ I at step 𝑇 + 1:

𝑝 (𝑠𝑢𝑇+1 = 𝑣 |S
𝑢 ) . (5)

Generally, sequential models are trained to increase the gap be-
tween the relevance scores of interacted items and non-interacted
items using pointwise [15], pairwise [35] or setwise [31] losses.
Various frameworks, including Markov Chains [10, 36], Recurrent
Neural Networks (RNN) [13, 23, 24, 28], Convolutional Neural Net-
works (CNN) [41, 50], and self-attention mechanisms [20, 29, 40],
are effectively used in these sequential models, demonstrating high
performance in terms of accuracy.

Let 𝑓𝜃 (𝑢, 𝑖, 𝑡) represent the relevance score between user 𝑢 and
item 𝑖 at step 𝑡 , with parameters 𝜃 . Existing calibrated recommen-
dation methods [1, 38, 39] often rely solely on post-processing
techniques and thus overlook the potential impact of calibration
adjustments on the final ranking order. However, it is crucial to
integrate calibration directly into the training process to anticipate
how rankings might change when calibration is applied. This proac-
tive approach is essential for achieving high performance in both
accuracy and calibration. To illustrate the importance of integrating
calibration directly into the training process, consider a scenario
where relevance scores indicate a preference for item 𝑖 over item
𝑗 based on past interactions (i.e., 𝑓𝜃 (𝑢, 𝑖, 𝑡) > 𝑓𝜃 (𝑢, 𝑗, 𝑡)). After the
training phase, calibration scores may compel the system to rank
item 𝑗 higher than item 𝑖 . It is difficult to determine whether these
items should be reranked, since the degree to which item 𝑖 is more
relevant than item 𝑗 becomes uncertain when calibration is taken
into account. Thus, ensuring that the model can maintain consistent
rankings even after calibration adjustments during reranking is
crucial for the calibrated sequential recommendation.

To address this issue, we propose a calibration-disentangled
learning-to-rank, a model-agnostic learning approach. For brevity,
let 𝑓𝜃 (𝑢, 𝑖, 𝑡) := 𝑟𝑢𝑖,𝑡 . Suppose user 𝑢 interacted with item 𝑖 instead of
item 𝑗 at step 𝑡 . This interaction indicates that the user prefers item
𝑖 over item 𝑗 , even with category preference taken into account.
Thus, at the recommendation step 𝑡 , it is crucial to recommend item
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(b) 
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Figure 4: Illustrative example of calibration-disentangled

learning-to-rank. Initially, miscalibration scores are disen-

tangled from relevance scores (a). Then, we train the model

based on both LBPR (b) and LCD−BPR (c), resulting in a person-

alized pairwise ranking considering calibration (d).

𝑖 to user 𝑢 over item 𝑗 , even subsequent to calibration. Existing
methods learn a preference order without considering the category
preference as follows:

𝑟𝑢𝑖,𝑡 > 𝑟
𝑢
𝑗,𝑡 . (6)

This order does not guarantee that item 𝑖 will be prioritized over
item 𝑗 after considering calibration. Hence, we propose to disen-
tangle calibration from pairwise ranking, which learns that item 𝑖

is preferred over item 𝑗 even with calibration considerations:

𝑟𝑢𝑖,𝑡 − KL(𝑝
𝑢
𝑡−1 | |𝑝𝑖 ) > 𝑟

𝑢
𝑗,𝑡 − KL(𝑝

𝑢
𝑡−1 | |𝑝 𝑗 ), (7)

where 𝑝𝑢
𝑡−1 is the sequential category preference of user 𝑢 at step

𝑡 − 1, and 𝑝𝑖 and 𝑝 𝑗 are the category distributions of items 𝑖 and 𝑗 ,
respectively. KL(·) is the miscalibration score computed by Equa-
tion (1). By integrating calibration directly into the training phase,
our method trains the model to optimize relevance while being
aware of calibration needs. This ensures that adjustments made for
calibration in the reranking phase do not negatively impact the rele-
vance of the recommendations, thereby maintaining accuracy when
enhancing calibration. To learn these two pairwise ranking losses
(Equations (6) and (7)), we propose the calibration-disentangled
learning-to-rank loss, which extends the Bayesian Personalized
Ranking (BPR) loss as follows:

L = LBPR + 𝛾LCD−BPR, (8)

where
LBPR =

∑︁
𝑢∈U

∑︁
𝑡 ∈[1,...,𝑇 ]

− log𝜎
(
𝑟𝑢𝑖,𝑡 − 𝑟

𝑢
𝑗,𝑡

)
, (9)

LCD−BPR =∑︁
𝑢∈U

∑︁
𝑡 ∈[1,...,𝑇 ]

− log𝜎
(
𝑟𝑢𝑖,𝑡 − KL(𝑝

𝑢
𝑡−1 | |𝑝𝑖 ) − 𝑟

𝑢
𝑗,𝑡 + KL(𝑝

𝑢
𝑡−1 | |𝑝 𝑗 )

)
,

(10)
where 𝜎 (·) is the sigmoid function and 𝛾 ∈ R is a hyperparame-
ter that determines the importance of LCD−BPR . The calibration-
disentangled learning-to-rank does not require learning additional
parameters, thus avoiding an increase in model complexity.

The key aspect of calibration-disentangled learning-to-rank is
its ability to dynamically adjust relevance scores by incorporating
calibration scores based on the user’s category preferences. As illus-
trated in Figure 4, this method initially separates the miscalibration
scores from relevance scores (Figure 4 (a)). For instance, if the cat-
egories of item 𝑖 significantly diverge from user 𝑢’s preferences
before 𝑡 , the model 𝑓𝜃 is prompted to increase the relevance score

Algorithm 1 Overall process of LeapRec

Input: {S𝑢 : 𝑢 ∈ U} and hyperparameters (𝛼 , 𝛽 , 𝛾 , and 𝜆)
Output: {R𝑢 : 𝑢 ∈ U}
1: while stop condition is not met do ⊲ Train a backbone
2: for 𝑢 ∈ U do

3: Optimize 𝑓𝜃 to minimize L ⊲ Equation (8)
4: end for

5: end while

6: for 𝑢 ∈ U do ⊲ Rerank
7: C𝑢 = {}
8: for 𝑘 ∈ [1, 𝐾] do
9: 𝑖 ← max𝑖∈I\C𝑢 (1 − 𝜆1/𝑘 )𝑟𝑢𝑖,𝑇+1 − 𝜆

1/𝑘ΔS𝐾𝐿 (𝑖 |C𝑢 )
10: C𝑢 ← C𝑢 ∪ {𝑖}
11: end for

12: R𝑢 ← C𝑢
13: end for

𝑟𝑢
𝑖,𝑡

(Figure 4 (d)) to compensate for the high miscalibration score
KL(𝑝𝑢

𝑡−1 |𝑝𝑖 ), using LCD−BPR (Figure 4 (c)). This approach differs
from previous methods that rely solely on LBPR , where personal-
ized ranking might change unpredictably after calibration during
reranking. However, relying only on LCD−BPR also can lead to is-
sues in personalized rankings. For example, consider a case where
𝑟𝑢
𝑖,𝑡
−KL(𝑝𝑢

𝑡−1 | |𝑝𝑖 ) is larger than 𝑟
𝑢
𝑗,𝑡
−KL(𝑝𝑢

𝑡−1 | |𝑝 𝑗 ), but 𝑟
𝑢
𝑖,𝑡

is lower
than 𝑟𝑢

𝑗,𝑡
. In such case, LCD−BPR prioritizes item 𝑖 over item 𝑗 when

calibration is considered, but it may overlook genuine relevance
if calibration is not considered. This case verifies the necessity of
integrating both LBPR and LCD−BPR .

3.2 Relevance-Prioritized Reranking

The reranking phase aims to maximize both accuracy and cali-
bration using the trained model 𝑓𝜃 . The goal is to recommend user
𝑢 a list of items R𝑢 = (𝑟𝑢1 , 𝑟

𝑢
2 , . . . , 𝑟

𝑢
𝐾
) where 𝑟𝑢

𝑘
∈ I is the 𝑘’th

recommended item. Reranking generates the list by selecting the
most suitable items among the candidates. The main challenge in
the reranking phase is to measure which item is the best for the
user at each step, considering both accuracy and calibration.

From Figure 1, we observe that a user is likely to interact with
an item that is associated with a category the user has not pre-
ferred before. For instance, a user who predominantly watches
action movies might develop an interest in romance movies due to
temporal factors. In this case, it is necessary to ensure that items
that users like are recommended regardless of their category to
satisfy the user’s future needs. However, naively using weighted
sum [1, 38, 39] may not adequately handle such cases. In the ex-
ample, the romance movie may have a low overall score despite
its high relevance due to the high miscalibration score, since it
contrasts with the user’s past category preferences. This conflict
of relevance and calibration should be treated as a critical issue
in the calibrated sequential recommendation, yet it has not been
thoroughly addressed in previous works [1, 3, 38, 39].

To address this challenge, our reranking strategy prioritizes a
user’s emerging interests by integrating both relevance and calibra-
tion but favoring relevance in the higher ranks of the recommen-
dation list. If we consider that the backbone model 𝑓𝜃 is trained to
predict the user’s evolving preferences based on a sequential model,



Calibration-Disentangled Learning and Relevance-Prioritized Reranking for Calibrated Sequential Recommendation CIKM ’24, October 21–25, 2024, Boise, ID, USA

Table 1: Summary of four real-world datasets used in this work.

Dataset # Users # Items # Categories # Interactions Avg. sequence len. User-item density Avg. # categories

ML-1M 6,038 3,883 18 575,281 95.28 0.0245 1.6503
Goodreads 16,765 25,474 10 954,958 56.96 0.0022 3.6269
Grocery 54,882 39,853 26 438,681 7.99 0.0002 1.0000
Steam 242,223 14,419 22 2,732,749 11.29 0.0008 2.6242

we can infer that the relevance scores from the model are more
closely related to a user’s emerging interests. Thus, we propose the
relevance priority property for the reranking algorithm as follows:
Property 1 (Relevance priority): In higher-ranked recommenda-
tions, relevance should be prioritized over calibration.

Reranking based on this property prevents potentially relevant
items from being lower ranked (or excluded) due to calibration
constraints, thereby offering a more accurate reflection of the user’s
evolving interests. Such prioritized approach has recently been
explored in previous work on multi-objective recommendation,
demonstrating its effectiveness [18].

To apply Property 1 in the reranking algorithm, we propose a
simple yet effective objective function for each user 𝑢 as follows:

max
R𝑢 , | R𝑢 |=𝐾

(
(1 − 𝜆1/𝑘 )

∑︁
𝑖∈R𝑢

𝑟𝑢𝑖,𝑇+1 − 𝜆
1/𝑘SKL (𝑢)

)
, (11)

where 𝜆 ∈ [0, 1] is a balancing hyperparameter between relevance
and calibration, 𝑘 ∈ [1, 𝐾] indicates the position in the recommen-
dation list, 𝑟𝑢

𝑖,𝑇+1 is the relevance score of item 𝑖 for user 𝑢 at step
𝑇 + 1 (i.e., 𝑓𝜃 (𝑢, 𝑖,𝑇 + 1)), and SKL (𝑢) is sequential miscalibration
which is defined in Equation (1). Smaller 𝑘 (i.e., higher ranking)
assigns more weight to relevance and larger 𝑘 (i.e., lower ranking)
to calibration. Hence, the objective function satisfies the relevance
priority property. Moreover, we leverage sequential miscalibration
SKL (𝑢) rather than static miscalibration used in most previous
methods [1, 3, 38] to consider the recent category preferences in
measuring the degree of calibration.

Finding the optimal recommendation list from Equation (11)
is a combinatorial optimization problem and NP-hard. Thus, we
adopt a greedy approach, which is fast and effective, to optimize
the objective function. Specifically, at the 𝑘’th recommendation for
user 𝑢, we select an item that maximizes the gain of scores among
items that are yet to be selected as follows:

max
𝑖∈I\C𝑢

(
(1 − 𝜆1/𝑘 )𝑟𝑢𝑖,𝑇+1 − 𝜆

1/𝑘ΔSKL (𝑖 |C𝑢 )
)
, (12)

where C𝑢 ⊆ R𝑢 is the current recommendation list for user 𝑢, and
ΔSKL (𝑖 |C𝑢 ) indicates the difference ofSKL (𝑢) when item 𝑖 is added
to the current recommendation list C𝑢 .

3.3 Overall Process of LeapRec

The overall process of LeapRec consists of the backbone model
training phase and the reranking phase. Algorithm 1 shows how
LeapRec trains the backbone model and reranks the results. Given
users’ sequential interactions {S𝑢 : 𝑢 ∈ U}, LeapRec returns
recommendation lists {R𝑢 : 𝑢 ∈ U} for all users. In lines 1 to
5, LeapRec trains a backbone model by minimizing the loss in
Equation (8) for predefined epochs (e.g., 100); in line 2, we adopt a
mini-batch training in our practical implementation. Then, in lines

6 to 13, LeapRec greedily selects 𝐾 items for each user considering
both relevance and sequential miscalibration.

4 EXPERIMENTS

In this section, we conduct experiments to answer the following
questions.
Q1. Performance comparison (Section 4.2). Does LeapRec pro-

vide better trade-off between accuracy and calibration com-
pared to competitors? How efficient and fast is LeapRec com-
pared to competitors in generating recommendations?

Q2. Ablation study (Section 4.3). Do the main components in
LeapRec help improve the performance?

Q3. Effect of the balancing hyperparameter (Section 4.4).How
does the balancing hyperparameter 𝜆, which is the key factor
in enhancing calibration, affect the overall recommendation?

Q4. Case study (Section 4.5). How LeapRec recommend a list of
items considering both relevance and calibration?

4.1 Experimental Setting

4.1.1 Datasets. We evaluate LeapRec and other methods using
four real-world datasets from distinct domains: movies (ML-1M1 [8]),
books (Goodreads2 [43]), grocery products (Grocery3 [11, 32]), and
video games (Steam4 [34]). These datasets are chosen for their diver-
sity in domain, sparsity level, and number of categories, as detailed
in Table 1. In ML-1M dataset, we follow previous work [1, 39] and
consider only ratings of four stars and above, simulating positive
feedback.

4.1.2 Backbone Model. Unless otherwise stated, we consider SAS-
Rec [20] as a backbone frameworkwhich has shown its superior per-
formance compared with other frameworks in comprehensive ex-
periments [20, 22]. However, the calibration-disentangled learning-
to-rank approach is open to other sequential recommendation
frameworks such as GRU4Rec [13], Caser [41], and BERT4Rec [40]
since it is a model-agnostic learning approach.

4.1.3 Baseline Methods. We compare LeapRec with the following
four existing calibration recommendation methods.
• CaliRec [39] is a post-processing approach that reranks the
output of a backbone model using a greedy algorithm, optimizing
for static calibration.
• CaliRec

+ [39] differs from CaliRec in reranking algorithm where
it optimizes for sequential calibration instead of static calibration.
We adopt SKL (𝑢) as in LeapRec for the miscalibration score.
• MIP [38] is a post-processing approach that utilizesmixed integer
programming, focusing on achieving static calibration.

1https://grouplens.org/datasets/movielens/1m
2https://cseweb.ucsd.edu/~jmcauley/datasets.html#goodreads
3https://cseweb.ucsd.edu/~jmcauley/datasets.html#amazon_reviews
4https://cseweb.ucsd.edu/~jmcauley/datasets.html#steam_data

https://grouplens.org/datasets/movielens/1m
https://cseweb.ucsd.edu/~jmcauley/datasets.html#goodreads
https://cseweb.ucsd.edu/~jmcauley/datasets.html#amazon_reviews
https://cseweb.ucsd.edu/~jmcauley/datasets.html#steam_data
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Figure 5: Trade-off comparison of LeapRec and baselines. The first row shows 𝑛𝐷𝐶𝐺@10 vs. S𝐾𝐿@10, and the second row shows

𝐻𝑅@10 vs. S𝐾𝐿@10. LeapRec outperforms the baselines on four real-world datasets, drawing better trade-off curves between

accuracy and calibration.

Table 2: Comparative analysis of computational complexity

for reranking algorithms between LeapRec and baselines.

Variables include 𝑛 (number of users),𝑚 (number of items),

𝑘 (recommendation list size), and 𝑐 (number of categories).

Method

LeapRec (ours)

MIP MCFCaliRec

CaliRec
+

Complexity O(𝑛𝑘𝑚) O (𝑛𝑚𝑘 ) O (𝑛 (𝑘 + 𝑐 )𝑚2 log𝑚)

• MCF [1] is a post-processiong approach that employs aminimum-
cost flow algorithm in its reranking phase to adjust for static
calibration.
• DACSR [3] is an end-to-end approach that simultaneously tar-
gets accuracy and static calibration optimization.
Each method uses hyperparameter 𝜆 to balance between accu-

racy and calibration.
4.1.4 Experimental Process. We follow the leave-one-out protocol
as established by prior studies [17, 18, 21, 40, 45]. For each user 𝑢,
we split their historical interaction sequence S𝑢 into three parts:
the most recent interaction for testing, the second most recent one
for validation, and all earlier interactions for training. For LeapRec
and the baseline methods (CaliRec, MIP, MCF, and DACSR), we
conduct training of models for 200 epochs on ML-1M dataset (100
epochs on the other datasets) and choose the models with the best
validation performance. Subsequently, we apply each method’s spe-
cific reranking strategy (except for DACSR), adjusting the balancing
hyperparameter 𝜆 to draw trade-off curves between relevance and
calibration.
4.1.5 Evaluation Metrics. We evaluate the performance in two
criteria accuracy and calibration, by investigating the trade-off
curve between them. We use hit ratio (HR@𝐾) and normalized
discounted cumulative gain (nDCG@𝐾) metrics to measure the
accuracy. Given top-𝐾 recommendation lists, HR@𝐾 measures
whether the lists contain the ground-truth items, and nDCG@𝐾
weighs the rank of ground-truth items in the list. We use sequential
miscalibration (𝑆𝐾𝐿@𝐾) metrics to measure the calibration (see

Table 3: Comparison of running times (in seconds) for rerank-

ing algorithms between LeapRec and baselines across vari-

ous datasets. Bold indicates the fastest record in each row.

Method LeapRec (ours) CaliRec CaliRec
+

MIP MCF

ML-1M 24 24 24 1,793 330
Goodreads 232 228 229 14,018 1,076
Grocery 2,808 2,816 2,799 18,176 3,015
Steam 3,925 4,121 3,944 92,245 16,256

Section 2.2 for details). Higher HR@𝐾 and nDCG@𝐾 indicate better
performance, while lower 𝑆𝐾𝐿@𝐾 indicates better performance. We
set 𝐾 to 10 in our experiments.
4.1.6 Hyperparameters. We implement LeapRec using PyTorch [33].
For all datasets, we set 𝛼 (Equation (2)), 𝛽 (Equation (4)), and 𝛾
(Equation (8)) to 0.9, 0.01, and 0.1, respectively. For a backbone SAS-
Rec [20], we set the learning rate, the dimension of embedding (e.g.,
user embedding and item embedding), batch size, and the number
of self-attention blocks to 0.001, 50, 128, and 2, respectively. More-
over, the dropout rate is set to 0.2 for ML-1M and 0.5 for the other
datasets. In addition, the maximum sequence length is set to 200 for
ML-1M and 50 for the other datasets. Following previous work [38],
we use Gurobi software [7] in MIP, limiting the time to 10 minutes
with an optimization gap 0.0001 for every user separately. We set
the number of candidates to 1, 000 and 100 respectively for MIP and
MCF, following their settings.

4.2 Performance Comparison (Q1)

4.2.1 Trade-off Comparison. In Figure 5, we compare LeapRec and
baselines on four real-world datasets to verify whether LeapRec
provides better trade-off between accuracy and calibration than
the baselines. We present the performance of the backbone mod-
els for both LeapRec (base) and SASRec (base), along with trade-
off curves of the methods between accuracy and calibration. The
results show that LeapRec consistently surpasses the baselines
across all datasets, drawing better trade-off curves. Notably, the
observed higher accuracy of LeapRec (base) compared to SASRec



Calibration-Disentangled Learning and Relevance-Prioritized Reranking for Calibrated Sequential Recommendation CIKM ’24, October 21–25, 2024, Boise, ID, USA

Best

Best

(a) ML-1M

Best

Best

(b) Goodreads

Best

Best

(c) Grocery

Best

Best

(d) Steam

Figure 6: Ablation study of LeapRec. The first row shows 𝑛𝐷𝐶𝐺@10 vs. S𝐾𝐿@10, and the second row shows 𝐻𝑅@10 vs. S𝐾𝐿@10.
The main components of LeapRec help improve the performance.
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Figure 7: Investigation of calibration-disentangled learning-

to-rank loss. Using onlyLCD−BPR significantly reduces perfor-
mance compared to using only LBPR or a combined approach

(LeapRec), which demonstrates the importance of integrat-

ing both losses to achieve high accuracy and calibration.

(base) shows that calibration-disentangled learning-to-rank offers
an enhanced learning mechanism. Additionally, LeapRecmaintains
high accuracy levels while significantly enhancing calibration, un-
like other competing methods. Furthermore, both LeapRec and
CaliRec+ achieve the lowest levels of sequential miscalibration by
optimizing terms during reranking. This advantage becomes partic-
ularly pronounced in datasets with longer user sequences, such as
ML-1M and Goodreads, highlighting the importance of addressing
sequential miscalibration as user interactions evolve over time.

We further expand our analysis by comparing the trade-off per-
formance on ML-1M and Goodreads datasets using GRU4Rec5,

5https://github.com/jeon185/LeapRec/blob/main/experiments/GRU4Rec.pdf

Caser6, and BERT4Rec7 as alternative backbone models. Similar to
the results presented in Figure 5, LeapRec outperforms the baselines
significantly in terms of trade-off between accuracy and calibration,
even when employing different backbone models such as GRU4Rec,
Caser, and BERT4Rec.

4.2.2 Complexity Comparison. Themodel training phase of LeapRec,
which incorporates LBPR and LCD−BPR , maintains a complexity
level comparable to traditional methods. Adding LCD−BPR does not
substantially increase the computational burden due to its efficient
integration, with the Kullback-Leibler (KL) divergence computation
being a O(𝑑) task, where 𝑑 represents the dimensionality of em-
bedding vectors. The reranking phase is where LeapRec distinctly
differs from baselines in terms of time complexity. In Table 2, we
compare the computational complexity of reranking algorithms.
The table shows that LeapRec and similar greedy approaches like
CaliRec and CaliRec+ are notably efficient compared to the more
complex algorithms such as MIP and MCF.

4.2.3 Speed Comparison. In Table 3, we compare the speed of
LeapRec and baselines by measuring the reranking times across
four real-world datasets. The batch size for all tests is standard-
ized at 128 users. For methods like MIP and MCF, 1, 000 candidate
items per user are considered to ensure a fair comparison. The re-
sults in the table confirm LeapRec’s competitive speed, comparable
to CaliRec and CaliRec+, thereby demonstrating its efficiency in
rapidly generating recommendations. Importantly, LeapRec not
only matches the speed of CaliRec and CaliRec+ but also signifi-
cantly surpasses baselines in achieving a superior trade-off between
accuracy and calibration as described in Section 4.2.1.

4.3 Ablation Study (Q2)

In Figure 6, we provide an ablation study that compares LeapRec
with its variants to evaluate the impact of its core components on
performance. The variant (-)CD removes calibration-disentangled

6https://github.com/jeon185/LeapRec/blob/main/experiments/Caser.pdf
7https://github.com/jeon185/LeapRec/blob/main/experiments/BERT4Rec.pdf

https://github.com/jeon185/LeapRec/blob/main/experiments/GRU4Rec.pdf
https://github.com/jeon185/LeapRec/blob/main/experiments/Caser.pdf
https://github.com/jeon185/LeapRec/blob/main/experiments/BERT4Rec.pdf
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learning, by adopting a naive SASRec instead of our proposed train-
ing approach as the backbone. The variants (-)PR-uniform and (-
)PR-reverse remove Property 1 (i.e., relevance priority property)
from the objective function in the reranking phase. Specifically,
(-)PR-uniform applies a uniform balancing coefficient 𝜆, diverging
from the adaptive 𝜆1/𝑘 used in Equation (11). In contrast, (-)PR-
reverse inverses this adaptation by employing 𝜆𝑘 , prioritizing cali-
bration in higher-ranked recommendations. Hence, (-)PR-uniform
considers the relevance and calibration equally in all 𝑘’th recom-
mendations, whereas (-)PR-reverse prioritizes the calibration in the
higher-ranked recommendations. The results show the superiority
of LeapRec over its variants, verifying the effectiveness of its core
components. Notably, LeapRec shows better performance than (-
)CD in most cases, indicating that disentangling calibration during
the training of personalized rankings is essential for achieving both
high accuracy and calibration. In addition, LeapRec consistently
outperforms (-)PR-uniform and (-)PR-reverse in achieving better
balances between accuracy and calibration across most cases. Espe-
cially, (-)PR-reverse, which deliberately inverts the relevance priority
property, exhibits a more pronounced decline in performance com-
pared to (-)PR-uniform, which merely omits the property; these
observations validate the significance of entailing the relevance
priority property in balancing accuracy and calibration.

In Figure 7, we further explore the impact of exclusively using
LCD−BPR , without using LBPR , on ML-1M and Goodreads datasets.
This analysis is presented separately due to the significantly dif-
ferent performance scales observed. The variant Only BPR, akin
to (-)CD, employs only LBPR to train the backbone model. In con-
trast, the variant Only CD-BPR is trained solely with LCD−BPR . The
results show that Only CD-BPR substantially underperforms com-
pared to LeapRec and Only BPR. This outcome supports the discus-
sion in Section 3.1 about the need to combine LBPR and LCD−BPR
to achieve high performance both on accuracy and calibration.
4.4 Effect of the balancing hyperparameter (Q3)

The balancing hyperparameter 𝜆, as defined in Equation (11),
is a key factor in controlling the balance between accuracy and
calibration. Increasing 𝜆 leads to more calibrated recommendations
at the cost of accuracy. In Figure 8, we examine the impact of varying
𝜆 on users’ overall recommendation quality on Goodreads dataset.
We use kernel density estimation (KDE) to evaluate the distribution
of sequential miscalibration SKL@10 across users under different
𝜆. In the figure, we also denote the average nDCG@10 to show
the change in accuracy. The results of low 𝜆 (e.g., 0.1) or missing
calibration (LeapRec (base)) show a wide range of distribution for
SKL@10, meaning a substantial variance in calibration across users.
However, as 𝜆 increases, recommendations become more uniformly
calibrated across users. The accuracy increases until 𝜆 reaches 0.7.
4.5 Case Study (Q4)

In Figure 9, we analyze a case to observe how LeapRec balances
relevance and calibration when recommending a list of items to a
user on Grocery dataset. We vary the calibration level for a random
user and observe how the user experiences the recommendations.
Figure 9 (a) represents the user’s sequential interactions and the
ground-truth item that the user will interact with. Figures 9 (b-d)
show the recommendation results of LeapRec for 𝜆 (defined in
Equation (11)) values 0.0, 0.3, and 0.9, respectively. Figure 9 (b)
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Figure 8: Kernel density estimation (KDE) of sequential mis-

calibration SKL@10 on Goodreads dataset, while varying the

balancing hyperparameter 𝜆; range of the x-axis is set to

[0, 0.5]. Averaged nDCG@10 for each setting is also written

in the legend. The wide range of KDE indicates the recom-

mendation quality in terms of calibration varies across users.

LeapRec successfully provides higher calibrated recommen-

dations to more users as 𝜆 increases.

shows that LeapRec accurately recommends the ground-truth item
at rank 1 without calibration (i.e., 𝜆 = 0.0). However, the overall
items in the list skew towards the user’s major interest Beverage,
narrowing the user experience for the recommendation. In Figures 9
(c-d), we observe that LeapRec effectively considers the user’s other
interest Candy & Chocolate as well as the major interest Beverage by
enhancing calibration. Notably, LeapRec effectively retains English
breakfast tea, the most relevant item, at rank 1 while improving
calibration.We further analyze another case where a user’s category
preference shifts towards a category previously not favored8.

5 RELATEDWORKS

Calibrated recommendation. Steck [39] first introduced cali-
brated recommendation to address the problem of traditional rec-
ommendation, where less dominant interests of users are often
neglected. The goal is to ensure that recommendation lists accu-
rately reflect the proportion of categories users have shown interest
in. Steck [39] proposed CaliRec which is a post-processing approach
that greedily adjusts the recommended items to better match the
user’s historical category distribution. Subsequent studies contin-
ued to adopt the post-processing strategy. Seymen et al. [38] in-
troduced a non-greedy approach by formulating calibration as a
constrained optimization problem and solving it with a mixed inte-
ger programming (MIP) algorithm. Abdollahpouri et al. [1] defined
the calibrated recommendation as the maximum flow optimization
problem and proposed a minimum cost flow (MCF) based algorithm.
On the other hand, Chen et al. [3] proposed DACSR, an end-to-end
method, to simultaneously optimize accuracy and calibration in a
single training phase.

Different from earlier advancements, our proposed method di-
rectly integrates calibration scores within the training phase, us-
ing a novel loss designed to enhance both the training and post-
processing phases. Additionally, we introduce a prioritized mecha-
nism to effectively balance accuracy and calibration, addressing the
dual criteria challenge more dynamically than previous methods.

8https://github.com/jeon185/LeapRec/blob/main/experiments/CaseStudy.pdf

https://github.com/jeon185/LeapRec/blob/main/experiments/CaseStudy.pdf
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Figure 9: (a) A real user’s sequential interactions and ground-truth next item in Grocery dataset. (b-d) The top-10 recommended

items for the user by LeapRec with different 𝜆: 0.0, 0.3, and 0.9. We mark the ground-truth item with a red box in each

recommendation result. Colored boxes denote the categories. The values of SKL@10 are 1.5920, 0.1001, and 0.0212 respectively
for 𝜆 = 0.0, 𝜆 = 0.3, and 𝜆 = 0.9. This case shows that LeapRec enhances the calibration of the overall recommendation list while

keeping relevant items at the top rank, as 𝜆 increases.

Sequential recommendation. Sequential recommender systems
predict users’ future interactions by considering the temporal dy-
namics of their sequential interactions. Such systems have shown
their effectiveness by capturing the users’ long-term and short-term
interests [13, 36]. As early work, FPMC [36] integrated first-order
Markov chains with matrix factorization techniques [25, 37] to
simultaneously address users’ sequential activities and overall pref-
erences. Subsequent research has evolved to include higher-order
Markov chains [9, 10], capturing more complex sequential depen-
dencies by considering multiple preceding interactions. Within the
last decade, deep learning models such as Recurrent Neural Net-
works (RNN) [6, 14], Convolutional Neural Networks (CNN) [26],
and Transformers [42] have been adopted in sequential recom-
mendation, marking significant progress through their ability to
model non-linear relationships in user behaviors. Models such as
GRU4Rec [13] and GRU4Rec+ [12] demonstrated the effectiveness
of GRU [6] in session-based recommendations. Tang andWang [41]
effectively utilized CNN for extracting sequential patterns across
both temporal and feature dimensions. More recently, Transformer-
based models such as SASRec [20], BERT4Rec [40], and Smart-
Sense [19] leveraged unidirectional and bidirectional Transformers
to capture complex correlations within a sequence. Other tech-
niques include memory networks [4, 16], translation learning [9],
hierarchical attention learning [49], graph neural network learn-
ing [2, 30, 47], and contrastive learning [5, 48, 51].

We focus on integrating calibration within sequential recom-
mender systems. Our method is model-agnostic, allowing it to be
applied across various sequential recommender systems.

6 CONCLUSION

In this work, we propose LeapRec, a novel method that effec-
tively balances accuracy and calibration in sequential recommen-
dation. LeapRec first trains a backbone model using the proposed
calibration-disentangled learning-to-rank loss to learn personalized
rankings when calibration is considered. Subsequently, LeapRec
applies the proposed relevance-prioritized reranking algorithm
to the backbone’s results, encouraging highly relevant items are
placed at the top while accounting for calibration throughout the
recommendations. LeapRec achieves superior performance over
existing calibrated recommendation methods in extensive exper-
iments. Our ablation study further confirms the necessity of the
core components of LeapRec. We also demonstrate through a case
study how LeapRec tackles relevance and calibration to achieve
high performance on both.
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