

Accurate Action Recommendation for Smart Home via Two-Level Encoders and Commonsense Knowledge

Hyunsik Jeon, Jongjin Kim, Hoyoung Yoon,
Jaeri Lee, and U Kang
Seoul National University
CIKM 2022

Overview

- Q. How can we accurately **recommend actions** for users to control their devices at home?
- A. SmartSense accurately recommends device controls to users!

Outline

- Introduction
- Proposed Method
 - Motivation
 - o Main Ideas
- Experiments
- Conclusion

Recommender System

- Recommender systems provide personalized items among the plethora of ones for each user
- They are essential in various online services
 - They enhance users' experience and increase sales revenue
- Applications
 - Amazon (e-commerce)
 - YouTube (video)
 - o Netflix (movie)
 - Spotify (music)

Action Recommender System

- Action recommender system is necessary for smart home
 - It <u>keeps users safe</u> when they forget a critical action (e.g., shutting off a gas valve)
 - It <u>reduces the hassles of users</u> when performing a cumbersome action (e.g., arming an alarm)

Recommend arming an alarm

Problem Definition

Action recommendation for smart home

- Given a user's historical actions before time t and temporal information at time t
 - Each action contains a device control and its temporal information
- Predict the user's device control at t

Outline

- Introduction
- Proposed Method
 - o Motivation
 - o Main Ideas
- Experiments
- Conclusion

Challenges

- Complicated correlation of an action
 - A user's action is affected by complex temporal information
 - E.g., people usually do laundry during the day on weekends

Complicated correlation of an action

Challenges

- Historical and contextual dependencies of an action
 - A user action depends both on the history and the current context

Historical dependency of device controls

Contextual dependency of device controls

Challenges

Capricious intention

- A user's sequential actions contain capricious intentions
 - People do not always act in sequence with only one intention
 - This easily leads to degraded performance of recommendation

A sequence of actions contains capricious intention

Research Motivation

- Existing methods for action recommendation
 - They miss addressing one or more of the main challenges

Challenges Method	Complicated correlation	Historical and contextual dependencies	Capricious intention
FMC, TransRec, Caser, SASRec, BERT4Rec			
SIAR			
CA-RNN			

How to address the three main challenges?

Outline

- Introduction
- Proposed Method
 - Motivation
 - o Main Ideas
- Experiments
- Conclusion

Proposed Method – Overview (1)

- We propose SmartSense
 - An accurate action recommender system for smart home
- Idea 1. Self- and query-attention for an action
 - To capture significant correlations in an action
- Idea 2. Self- and context-attention for a sequence
 - To handle historical and contextual dependencies in a sequence
- Idea 3. Knowledge transfer from common routines
 - To learn proximity between devices

Proposed Method – Overview (2)

• The proposed **SmartSense** wins on features

Challenges Method	Complicated correlation in an action	Historical and contextual deps. in a sequence	Capricious intention
FMC, TransRec, Caser, SASRec, BERT4Rec			
SIAR			
CA-RNN			
SmartSense (ours)			

- The overall architecture of **SmartSense**
 - Action encoder, sequence encoder, knowledge transfer module

 Action encoder summarizes an action into a vector, capturing significant correlations in the action

 Sequence encoder summarizes sequential actions into a vector, handling historical and contextual dependencies

 Knowledge transfer module regularizes device embeddings utilizing routine data to learn proximity between devices

Action Encoder (1)

- Challenge 1. How to capture the significant correlation among the complicated ones in an action?
 - Simple aggregations (e.g., summation or concatenation) cannot identify the complicated correlations between the variables

Action Encoder (2)

- Idea 1-1. Self-attention for input variables
 - To correlate given information in the action
- Idea 1-2. Query-attention for summarization
 - To capture significant correlations in the action

Sequence Encoder (1)

- Challenge 2. How to handle the historical and contextual dependencies in a sequence?
 - Two types of correlations are important
 - Between actions in a sequence (historical dependency)
 - Between each action and the current context (contextual dependency)
 - A simple RNN-based model is restricted for both dependencies

Sequence Encoder (2)

- Idea 1-1. Self-attention for sequential actions
 - To correlate between actions in the sequence
- Idea 1-2. Context-attention for summarization
 - To correlate each action and the current context

Queried Transformer Encoder (1)

• The action encoder and sequence encoder necessitate the common functionalities: **self- and query-attention**

How to design an architecture to embody the two functionalities?

Queried Transformer Encoder (2)

- We propose QTE (Queried Transformer Encoder)
 - Definition: h = f(X, q)
 - f is the QTE function
 - Given a set of input vectors $\mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_k]^{\mathsf{T}}$, and a query vector \mathbf{q}
 - QTE
 - It transforms the input matrix X into $\mathbf{H} = [\mathbf{h}_1, ..., \mathbf{h}_k]^{\mathsf{T}}$ through self-attention module
 - It summarizes H into a vector h
 with query-attention module
 using the given query vector q

Queried Transformer Encoder (3)

Self-attention module of QTE

- The goal is to correlate the given vectors $\mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_k]^{\mathsf{T}} \in \mathbb{R}^{k \times d}$
 - k is the number of input vectors, and d is the size of vector
- Make query, key, and value matrices as follows:

$$Q = XW^Q, K = XW^K, V = XW^V$$

- \mathbf{W}^Q , \mathbf{W}^K , and \mathbf{W}^V are learnable weights
- Compute matrix X as follows:

$$\bar{\mathbf{X}} = \mathbf{A}\mathbf{V}$$
 where $\mathbf{A} = \operatorname{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^{\top}}{\sqrt{d}}\right)$

• Obtain transformed matrix $\mathbf{H} \in \mathbb{R}^{k \times d}$ using a network as follows:

$$H = Trans(X) = X + \bar{X} + FNN(X + \bar{X})$$

Queried Transformer Encoder (4)

- Query-attention module of QTE
 - The goal is to summarize the vectors $\mathbf{H} = [\mathbf{h}_1, ..., \mathbf{h}_k]^{\top} \in \mathbb{R}^{k \times d}$ into a vector \mathbf{h} while capturing significant information depending on the query \mathbf{q}
 - Summarize H into h using q as follows:

$$\mathbf{h} = \text{QueryAtt}(\mathbf{H}, \mathbf{q}) = \sum_{i=1}^{k} \alpha_{i} \mathbf{h}_{i}, \text{ where}$$

$$\alpha_{i} = \frac{\exp(\beta_{i})}{\sum_{j=1}^{k} \exp(\beta_{j})}, \quad \beta_{i} = \mathbf{q}^{\top} \tanh(\mathbf{W}^{H} \mathbf{h}_{i} + \mathbf{b}^{H})$$

- α_i and β_i are normalized and unnormalized scores of \mathbf{h}_i for \mathbf{q} , respectively
- \mathbf{W}^H and \mathbf{b}^H are learnable weight and bias, respectively

Revisit the Action Encoder

- Obtain learnable embedding vectors for each variable in an action: $\mathbf{e}_{u,i}^{(1)}, \mathbf{e}_{u,i}^{(2)}, \mathbf{z}_{u,i}^{(1)}, \mathbf{z}_{u,i}^{(2)} \in \mathbb{R}^d$
 - $_{\circ}$ The embeddings of ith device, device control, day of week, and hour, respectively, for user u
- Employ QTE as follows:

$$\mathbf{h}_{u,i} = f_c(\mathbf{X}_{u,i}, \mathbf{q}_c)$$

- $\mathbf{X}_{u,i} \in \mathbb{R}^{4 \times d} = \left[\mathbf{e}_{u,i}^{(1)}, \mathbf{e}_{u,i}^{(2)}, \mathbf{z}_{u,i}^{(1)}, \mathbf{z}_{u,i}^{(2)}\right]^{\mathsf{T}}$ is the set of input embeddings
- $\mathbf{q}_c \in \mathbb{R}^d$ is a learnable global query vector
- $f_c(\cdot)$ is the action encoder with QTE structure

Revisit the Sequence Encoder (1)

Obtain learnable embedding vectors for the current contexts:

$$\mathbf{z}_{u,t}^{(1)}, \mathbf{z}_{u,t}^{(2)} \in \mathbb{R}^d$$

- $_{\circ}$ The embeddings of ith day of week and hour, respectively, for user u
- Employ QTE as follows:

$$\mathbf{s}_{u,t} = f_s(\mathbf{H}_u + \mathbf{P}, \operatorname{concat}(\mathbf{z}_{u,t}^{(1)}, \mathbf{z}_{u,t}^{(2)}))$$

- $\mathbf{h} \in \mathbb{R}^{(t-1) \times d} = \left[\mathbf{h}_{u,1}, \dots, \mathbf{h}_{u,(t-1)}\right]^{\mathsf{T}}$ is stacked vectors of actions
- $\mathbf{P} \in \mathbb{R}^{(t-1) \times d}$ is a learnable positional embedding matrix to identify the position of the input vectors
- $f_s(\cdot)$ is the sequence encoder with QTE structure

Revisit the Sequence Encoder (2)

Predict the probabilities of device controls as follows:

$$\hat{\mathbf{y}}_{u,t} = \operatorname{softmax}(\mathbf{E} \, \mathbf{s}_{u,t})$$

- $\hat{\mathbf{y}}_{u,t} \in \mathbb{R}^{N_d}$ is the predicted probabilities of device controls for user u at time t
- $\mathbf{E} \in \mathbb{R}^{N_d \times d}$ is the learnable embedding matrix of device controls for the prediction
- N_d is the number of device controls

- Challenge 3. How to learn proximity between devices?
 - Capricious intentions in historical actions may mislead the model to learn false proximity between two co-occurred actions

- Idea 3. Commonsense knowledge transfer from routine data
 - To effectively learn proximity between devices
- Routine data
 - Collection of frequently used device patterns registered by various users
 - Devices of each routine are probable to share a common intention
 - E.g., sequential actions of laundry, or sequential actions of cooling off the room

Commonsense Knowledge Transfer (3)

Regularization term

 We regularize the model to learn proximity between devices in the same routines

$$\mathcal{L}_{reg} = -\sum_{i} \sum_{d_{j} \in \mathcal{R}_{i}} \left(\log \left(\sigma(\mathbf{e}_{j}^{\top} \mathbf{e}_{j+1}) \right) + \sum_{d_{k} \in p(\mathcal{R}_{i})} \log \left(\sigma(-\mathbf{e}_{j}^{\top} \mathbf{e}_{k}) \right) \right)$$

- \mathcal{R}_i is ith routine which consists of sequential devices
- $p(\mathcal{R}_i)$ is random negative samples of \mathcal{R}_i
- $e_j \in \mathbb{R}^d$ is the embedding vector of device d_j
 - old It is shared with the device embedding of the model

Objective Function

• We train *SmartSense* to minimize the cross-entropy loss and the regularization loss as follows:

$$\mathcal{L}(\mathbf{X}, \mathbf{Y}) = -\frac{1}{n} \sum_{u} \sum_{i} \mathbf{y}_{u}(i) \log \hat{\mathbf{y}}_{u}(i) + \mathcal{L}_{reg}$$

Cross-entropy loss

Regularization loss

- $\mathcal{X} \in \mathbb{R}^{n \times l \times 4}$ is an input tensor of n sessions and l time steps
- $\mathbf{Y} \in \mathbb{R}^{n \times N_d}$ is a matrix of ground-truth labels
- $\mathbf{y}_u \in \mathbb{R}^{N_d}$ is the one-hot vector of the ground-truth label for session u
- $\hat{\mathbf{y}}_u \in \mathbb{R}^{N_d}$ is the predicted probabilities for session u
- $y_u(i), \hat{y}_u(i) \in \mathbb{R}$ are ith element in y_u and \hat{y}_u , respectively

Outline

- Introduction
- Proposed Method
- Experiments
- Conclusion

Questions

- We answer the following questions by experiments:
 - Q1 (Accuracy). Does SmartSense achieve higher accuracy than competitors?
 - Q2 (Ablation study). Do the main ideas of SmartSense help improve performance?
 - Q3 (Case study). How does SmartSense recommend device controls according to the current contexts?
 - Q4 (Embedding analysis). Does SmartSense successfully learn proximity between devices?

Datasets

- We use real-world datasets of Samsung SmartThings users
 - Four log datasets

Name	Region	Time period (Y-M-D)	# Sessions	# Instances	# Devices	# Device controls
KR	Korea	2021-11-20 ~ 2021-12-20	12,992	285,409	38	272
US	USA	2022-02-22 ~ 2022-03-21	4,764	67,882	40	268
SP	Spain	2022-02-28 ~ 2022-03-30	1,506	15,665	34	234
FR	France	2022-02-27 ~ 2022-03-25	388	4,423	33	222

Three routine datasets: (AP→KR, NA→US, EU→SP/FR)

Name	Region	# Routines	# Devices
AP	Asia-Pacific	17,773	36
NA	North America	26,241	35
EU	Europe	23,781	28

Baselines

- We compare SmartSense with 8 competitors
 - Pop is a popularity-based recommendation model
 - FMC, TransRec, Caser, SASRec, and BERT4Rec are sequential recommendation models
 - SIAR and CA-RNN are context-aware recommendation models

Experimental Settings

• Evaluation metric

 We evaluate the performance with mean average precision (mAP@k) which treats higher-ranked items more importantly

• Experimental process

- We create sequential instances with a window of the length of 10
 - 9 input actions / 1 target action
- We randomly split the instances into trn/vld/test sets by 7:1:2 ratio
- The hour is one of the 8 time ranges of 3 hours in length
 - 0-3, 3-6, 6-9, 9-12, 12-15, 15-18, 18-21, and 21-24

Q1. Accuracy

- Q1. Does *SmartSense* achieve higher accuracy than competitors?
- A1. SmartSense outperforms the competitors

	$\mathbf{mAP}@k$											
Model		Korea			USA			Spain			France	
	@1	@3	@5	@1	@3	@5	@1	@3	@5	@1	@3	@5
POP	0.3416	0.4918	0.5045	0.1886	0.3146	0.3737	0.4973	0.6337	0.6455	0.4949	0.5955	0.6114
FMC [31]	0.5075	0.6391	0.6569	0.4581	0.6082	0.6270	0.4102	0.5953	0.6015	0.4427	0.6330	0.6477
TransRec [7]	0.3854	0.5637	0.5830	0.3351	0.5240	0.5426	0.3819	0.6149	0.6209	0.4255	0.6238	0.6393
Caser [36]	0.5676	0.7064	0.7213	0.5535	0.7051	0.7177	0.7906	0.8548	0.8616	0.7706	0.8249	0.8295
SASRec [16]	0.5763	0.7064	0.7212	0.5657	0.7098	0.7228	0.7929	0.8570	0.8630	0.7740	0.8286	0.8389
BERT4Rec [34]	0.5927	0.7253	0.7393	0.5630	0.7121	0.7254	0.7887	0.8610	0.8662	0.7776	0.8475	0.8507
CA-RNN [25]	0.5703	0.6958	0.7095	0.4860	0.6315	0.6459	0.6748	0.7253	0.7350	0.5141	0.5650	0.5767
SIAR [29]	0.5936	0.7248	0.7381	0.5718	0.7163	0.7288	0.7913	0.8560	0.8628	0.7706	0.8258	0.8311
SMARTSENSE (proposed)	0.6515	0.7650	0.7760	0.6247	0.7541	0.7639	0.8101	0.8707	0.8756	0.7944	0.8544	0.8578

Q2. Ablation Study

- Q2. Do the main ideas of *SmartSense* help improve performance?
- A2. All three main ideas help improve the performance
 - Act, Seq, and Reg refer to action encoder, sequence encoder, and commonsense knowledge transfer module, respectively
 - The encoders are replaced with simple aggregation (e.g., mean of vectors)

Model		Korea		USA			
	@1	@3	@5	@1	@3	@5	
SMARTSENSE-Act SMARTSENSE-Seq	0.5925	0.7256	0.7389	0.5802	0.7228	0.7350	
SmartSense-Seq	0.6484	0.7631	0.7743	0.6194	0.7489	0.7592	
SmartSense-Reg	0.6461	0.7608	0.7721	0.6189	0.7497	0.7600	
SmartSense-Reg SmartSense-All	0.5941	0.7265	0.7396	0.5752	0.7198	0.7321	
SMARTSENSE	0.6515	0.7650	0.7760	0.6247	0.7541	0.7639	

Q3. Case Study

• Q3. How does *SmartSense* recommend device controls according to the current contexts?

• A3. SmartSense dynamically recommends device controls

reflecting the current context

Focuses on past actions relevant to the current context

Case (B): currently nighttime

Case (A): currently daytime

Recommends device controls relevant to the current contexts

Q4. Embedding Analysis

- Q4. Does SmartSense successfully learn proximity between devices?
- A4. SmartSense successfully learns the proximity between devices thanks to the commonsense knowledge transfer
 - Cosine similarity between embeddings of related devices is high

Devices Related to Indoor Environmental Quality

Outline

- Introduction
- Proposed Method
- Experiments
- · Conclusion

Conclusion

- We propose SmartSense for action recommendation
- The main ideas are summarized as follows:
 - oldea 1. Self- and query-attention for an action
 - oldea 2. Self- and context-attention for a sequence
 - oldea 3. Knowledge transfer from common routines
- SmartSense achieves SOTA performance giving up to 9.8% higher mAP@1 on real-world datasets

Thank you!

Hyunsik Jeon

Homepage: https://jeon185.github.io

Dataset: https://github.com/snudatalab/SmartSense

Ack: we thank SIGIR for the student travel grant supporting the conference registration